DATA

General:
Spectral Response.......................... S-4
Wavelength of Maximum Response.......... 4000 ± 500 angstroms
Cathode:
 Minimum Projected Length*.............. 15/16"
 Minimum Projected Width*............... 5/16"
Direct Inter-electrode Capacitances:
 Anode to Dynode No. 9................... 4 µf
 Anode to All Other Electrodes.......... 6.5 µf
Maximum Overall Length.................... 3-11/16"
Maximum Seated Length...................... 3-1/8"
Length, Base Seat to Center of
 Useful Cathode Area..................... 1-15/16" ± 3/32"
Maximum Diameter......................... 1-5/16"
Bulb.. T-9
Mounting Position........................ Any
Base.. Small-Shell Submagnal 11-Pin,
 Non-Hydroscopic
Easing Designation for BOTTOM VIEW...... 11K

Pin 1 - Dynode No.1
Pin 2 - Dynode No.2
Pin 3 - Dynode No.3
Pin 4 - Dynode No.4
Pin 5 - Dynode No.5
Pin 6 - Dynode No.6

Direction of Light

Maximum Ratings, Absolute Values:
ANODE-SUPPLY VOLTAGE (DC or Peak AC)*...... 1250 max. volts
SUPPLY VOLTAGE BETWEEN DYNODE No. 9
and ANODE (DC or Peak AC).............. 250 max. volts
PEAK ANODE CURRENT...................... 10 max. ma
AVERAGE ANODE CURRENT*................ 1 max. ma
AMBIENT TEMPERATURE...................... 75 max. °C

Characteristics:
With 100 volts per dynode stage and
100 volts between dynode No. 9 and anode

<table>
<thead>
<tr>
<th>Min.</th>
<th>Av.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC Anode Dark Current#*</td>
<td>-</td>
<td>0.1</td>
</tr>
</tbody>
</table>

* On plane perpendicular to indicated direction of incident light.
□ Referred to cathode.
○ Average over any interval of 30 seconds maximum.
At 25°C. Dark current due to thermionic emission and ion feedback may be reduced by the use of refrigerants.
● For maximum signal-to-noise ratio, operation below 1000 volts is recommended.

 Indicates a change.
Sensitivity:

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Av.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 4000 angstroms</td>
<td>18600</td>
<td></td>
<td>µamp/µwatt</td>
</tr>
<tr>
<td>Luminous:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cathode§</td>
<td>20</td>
<td></td>
<td>µamp/lumen</td>
</tr>
<tr>
<td>Anode*:</td>
<td>4.5</td>
<td>20</td>
<td>300</td>
</tr>
<tr>
<td>at 0 cps</td>
<td></td>
<td></td>
<td>amp/lumen</td>
</tr>
<tr>
<td>at 100 Mc.</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Current Amplification*</td>
<td>1×10<sup>5</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent Noise Input*</td>
<td>7×10<sup>-12</sup></td>
<td></td>
<td>1 lumen</td>
</tr>
</tbody>
</table>

Characteristics:

With 75 volts per dynode stage and 50 volts between dynode No. 9 and anode.

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Av.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 4000 angstroms</td>
<td>2800</td>
<td></td>
<td>µamp/µwatt</td>
</tr>
<tr>
<td>Luminous:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cathode§</td>
<td>20</td>
<td></td>
<td>µamp/lumen</td>
</tr>
<tr>
<td>Anode*:</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Amplification*</td>
<td>150000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§ For conditions the same as shown under Anode Luminous Sensitivity except that the value of light flux is 0.01 lumen and that 100 volts are applied between cathode and all other electrodes connected together as anode.

* Measured under conditions specified on sheet "PHOTOTUBE SENSITIVITY AND SENSITIVITY MEASUREMENTS" at the front of this Section.

* Ratio of anode sensitivity to cathode sensitivity.

* Defined as the value where the rms output current is equal to the rms noise current determined under the following conditions: 100 volts per stage, 25°C tube temperature, ac-amplifier bandwidth of 1 cycle per second, tungsten light source at 2870K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The “on” period of the pulse is equal to the “off” period. The output current is measured through a filter which passes only the fundamental frequency of the pulses.

SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-4 Response is shown at the front of this Section.

OPERATING NOTES

The operating stability of the 931-A is dependent on the magnitude of the anode current and its duration. When the 931-A is operated at high values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 931-A usually recovers a substantial percentage of such loss in sensitivity.

(continued on next page)
The use of an average anode current well below the maximum rated value of 1.0 milliampere is recommended when stability of operation is important. When maximum stability is required, the anode current should not exceed 250 microamperes.

© OF BULB WILL NOT DEVIATE MORE THAN 2° IN ANY DIRECTION FROM THE PERPENDICULAR ERECTED AT CENTER OF BOTTOM OF BASE.

92CM-6264R2
EQUIVALENT-NOISE-INPUT CHARACTERISTIC

100 VOLTS PER STAGE
BANDWIDTH: 1 CPS
LIGHT SOURCE: TUNGSTEN, AT 2870°K
INTERRUPTED AT 90 CPS TO PRODUCE PULSES
ALTERNATING BETWEEN ZERO AND FLUX VALUE
SHOWN FOR ANY GIVEN TUBE TEMPERATURE;
"ON" PERIOD OF PULSE EQUAL TO "OFF" PERIOD;
RMS SIGNAL CURRENT = RMS NOISE CURRENT.

TUBE TEMPERATURE - DEGREES CENTIGRADE

JUNE 28, 1950 TUBE DEPARTMENT 92CM-7505
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY
AVERAGE ANODE CHARACTERISTICS

VOLTS/STAGE = 100

PLATE MILLIAMPERES

0 0.5 2.0 2.5

0 100 150 200 250 300 350 400

VOLTS BETWEEN ANODE & DYNODE N29

DEC. 1, 1943

RCA VICTOR DIVISION
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-6268 R2
TYPICAL CIRCUITS

A-C POWER-SUPPLY CIRCUIT
with uniformly tapped transformer

HALF-WAVE POWER-SUPPLY CIRCUIT
with bleeder for supplying d-c voltages

The license extended to the purchaser of tubes appears in the License Notice accompanying them. Information contained herein is furnished without assuming any obligations.

DEC. 1, 1943

RCA VICTOR DIVISION
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY
CIRCUIT USING H-F OSCILLATOR
for supplying a-c voltages to dynodes No.1 to No.9
and separate d-c voltage supply for the anode stage

FULL-WAVE POWER-SUPPLY CIRCUIT
with bleeder for supplying d-c voltages to dynodes No.1 to
No.9 and separate d-c voltage supply for the anode stage
Photomultiplier Tube

9-Stage, Side-On Type Having S-4 Spectral Response

For general purpose applications in low-light level detection and measurement systems.

ENERAL

Spectral Response .. S-4
Wavelength of Maximum Response 4000 ± 500 angstroms
Cathode, Opaque Cesium-Antimony
Minimum projected length \(a \) 0.94 in (2.4 cm)
Minimum projected width \(a \) 0.31 in (0.8 cm)
Window Lime Glass (Corning \(b \) No. 0080), or equivalent
Index of refraction at 4360 angstroms 1.523

Dynodes:

Substrate .. Nickel
Secondary-Emitting Surface Cesium-Antimony
Structure Circular-Cage, Electrostatic-Focus Type

Direct Interelectrode Capacitances (Approx.):

Anode to dynode No.9 4.4 pF
Anode to all other electrodes 6.0 pF
Maximum Overall Length 3.68 in (9.3 cm)
Seated Length 3.12 in (7.9 cm)
Maximum Diameter 1.31 in (3.3 cm)

UL .. T9
Base Small-Shell Submagnal 11 Pin, (JEDEC Group 2, No. B11-88), Non-hygroscopic
Socket Amphenol \(c \) No. 78S11T, or equivalent
Magnetic Shield Millen \(d \) No. 80801B, or equivalent
Operating Position Any
Weight (Approx.) 1.6 oz

MAXIMUM RATINGS, Absolute-Maximum Values

DC or Peak AC Supply Voltage:

Between anode and cathode 1250 max. \(\text{V} \)
Between anode and dynode No.9 250 max. \(\text{V} \)
Between consecutive dynodes 250 max. \(\text{V} \)
Between dynode No.1, and cathode 250 max. \(\text{V} \)
Average Anode Current \(^{f}\) \(1.0\) max. mA
Ambient Temperature \(^{g}\) \(+75\) max. °C

CHARACTERISTICS RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing 1/10 of E between cathode and dynode No.1; 1/10 of E for each succeeding dynode stage; and 1/10 of E between dynode No.9 and anode.

With E = 1000 volts (Except as noted)

<table>
<thead>
<tr>
<th>Anode Sensitivity:</th>
<th>Min.</th>
<th>Typical</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiant (^{h}) at 4000 angstroms . . .</td>
<td>(-8.3 \times 10^4)</td>
<td>-</td>
<td>A/W</td>
</tr>
<tr>
<td>Luminous (^{i}) ((2870^0 \text{ K}))</td>
<td>10</td>
<td>80</td>
<td>600</td>
</tr>
</tbody>
</table>

Cathode Sensitivity:				
Radiant \(^{k}\) at 4000 angstroms . . .	\(-0.04\)	-	A/W	
Luminous \(^{m}\) \((2870^0 \text{ K})\)	\(-4 \times 10^{-5}\)	-	A/1m	
Quantum Efficiency at 3800 angstroms . . .	-	13	-	%

| Current Amplification . . . | - | \(2 \times 10^6\) | - |

| Anode Dark Current \(^{n}\) | - | \(5 \times 10^{-9}\) | \(5 \times 10^{-8}\) | A |

| Equivalent Anode Dark Current | \(-\) | \(2.5 \times 10^{-10}\) | \(2.5 \times 10^{-9}\) | lm |
| Input \(^{p}\) | \(-\) | \(2.4 \times 10^{-13}\) | \(2.4 \times 10^{-12}\) | W |

| Equivalent Noise | \(-\) | \(3 \times 10^{-12}\) | - | ln |
| Input \(^{q}\) | \(-\) | \(2 \times 10^{-15}\) | - | W |

| Anode-Pulse Rise Time \(^{s}\) at 1250 V . . . | \(-\) | \(1.6 \times 10^{-9}\) | - | s |

| Electron Transit Time \(^{t}\) at 1250 V | \(-\) | \(1.6 \times 10^{-8}\) | - | s |

\(^{a}\) On plane perpendicular to the indicated direction of incident light and passing through the major axis of the tube.

\(^{b}\) Made by Corning Glass Works, Corning, NY 14830.

\(^{c}\) Made by Amphenol Electronics Corporation, 1830 South 54th Avenue, Chicago 50, IL 60650.

\(^{d}\) Made by James Millen Manufacturing Company, 150 Exchange Street, Malden, MA 02148.

\(^{f}\) Averaged over any interval of 30 seconds maximum.

Indicates a change or addition.
Tube operation at room temperature or below is recommended.

This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 1036 lumens per watt.

Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 10 microlumens is used.

This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 1036 lumens per watt.

Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 100 volts are applied between cathode and all other electrodes connected as anode.

At a tube temperature of 22° C. With supply voltage adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current caused by thermionic emission may be reduced by use of a refrigerant.

At 4000 angstroms. These values are calculated from the EADCI values in lumens using a conversion factor of 1036 lumens per watt.

Under the following conditions: Tube temperature 22° C, external shield connected to cathode, bandwidth 1 Hz, tungsten-light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.

At 4000 angstroms. This value is calculated from the ENI value in lumens using a conversion factor of 1036 lumens per watt.

Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

DIMENSIONAL OUTLINE

\[\text{DIMENSIONS ARE IN INCHES UNLESS OTHERWISE STATED.} \]

<table>
<thead>
<tr>
<th>Inch Dimension Equivalents in Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inch</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>.09</td>
</tr>
<tr>
<td>.190</td>
</tr>
<tr>
<td>.250</td>
</tr>
<tr>
<td>.270</td>
</tr>
</tbody>
</table>
TYPICAL VOLTAGE-DIVIDER ARRANGEMENT

R₁ through R₁₀ = 20,000 to 1,000,000 ohms

Note 1: Adjustable between approximately 500 and 1250 volts.

Note 2: Capacitors C₁ through C₃ should be connected at tube socket for optimum high-frequency performance.
TERMINAL DIAGRAM (Bottom View)

Pin 1: Dynode No.1
Pin 2: Dynode No.2
Pin 3: Dynode No.3
Pin 4: Dynode No.4
Pin 5: Dynode No.5
Pin 6: Dynode No.6
Pin 7: Dynode No.7
Pin 8: Dynode No.8
Pin 9: Dynode No.9
Pin 10: Anode
Pin 11: Photocathode

TYPICAL ANODE CHARACTERISTICS

VOLTS/STAGE *100
LIGHT SOURCE IS A TUNGSTEN—FILAMENT LAMP OPERATED AT
COLOR TEMPERATURE OF 2870°K.
TYPICAL VARIATION OF PHOTOCATHODE SENSITIVITY ALONG TUBE LENGTH

SPOT SIZE: 1MM DIA. APPROX.
VARIATIONS CAUSED BY INTERCEPTION OF LIGHT BY GRILL AS WELL AS SURFACE IRREGULARITIES HAVE BEEN IGNORED.

TYPICAL VARIATION OF PHOTOCATHODE SENSITIVITY ACROSS PROJECTED WIDTH IN PLANE OF GRILL

SPOT SIZE: 1MM DIA. APPROX.
GRILL TOWARD OBSERVER, BASE DOWN.
CATHODE WIDTH PROJECTED NORMAL TO PLANE OF GRILL.
VARIATIONS CAUSED BY INTERCEPTION OF LIGHT BY GRILL AS WELL AS SURFACE IRREGULARITIES HAVE BEEN IGNORED.
TYPICAL VARIATION OF SENSITIVITY AS TUBE IS ROTATED WITH RESPECT TO FIXED LIGHT BEAM

SUPPLY VOLTAGE BETWEEN ANODE AND CATHODE = CONSTANT
ZERO-DEGREE ROTATIONAL POSITION OF TUBE IS ESTABLISHED
BY A COLLIMATED LIGHT BEAM PERPENDICULAR TO AND
FILLING THE PLANE OF THE GRILL.
TUBE MOUNTED VERTICALLY WITH ALLOWANCE MADE FOR ROTATION
ABOUT MAJOR TUBE AXIS.
ROTORATIONAL POSITION (TOP VIEW) CLOCKWISE = (-)
ROTORATIONAL POSITION (TOP VIEW) COUNTERCLOCKWISE = (+)

DEGREES OF ROTATION

RELATIVE LUMINOUS SENSITIVITY

92CS-867IR2

TYPICAL CHARACTERISTIC OF OUTPUT CURRENT AS A FUNCTION OF DYNODE-NO.6 VOLTS

ANODE SUPPLY VOLTS (E) = 1000
VOLTS PER STAGE EXCEPT FOR DYNODE-No.6 STAGE = 100

DYNODE-No.6 VOLTS (REFERRED TO ANODE)

RELATIVE OUTPUT CURRENT

92CS-8672RI
TYPICAL CHARACTERISTIC OF OUTPUT CURRENT AS A FUNCTION OF SIMULTANEOUS MODULATION OF DYNODES NO.5 AND NO.6

ANODE-TO-DYNODE No.9 VOLTS = 200
VOLTS PER SUCCEEDING DYNODE STAGE EXCEPT FOR DYNODEs No.5 AND No.6 = 100
A CONSTANT VOLTAGE DIFFERENCE OF 100 VOLTS IS MAINTAINED BETWEEN DYNODEs No.5 AND No.6 DURING MODULATION. ANODE IS AT GROUND POTENTIAL.

<table>
<thead>
<tr>
<th>RELATIVE ANODE CURRENT</th>
<th>-600</th>
<th>-500</th>
<th>-400</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

92CM-11375
SUPPLY VOLTAGE (E) ACROSS VOLTAGE DIVIDER PROVIDING 1/10 OF E BETWEEN CATHODE AND DYNODE No.1; 1/10 OF E FOR EACH SUCCEEDING DYNODE STAGE; AND 1/10 OF E BETWEEN DYNODE No. 9 AND ANODE.
TYPICAL EFFECT OF MAGNETIC FIELD ON ANODE CURRENT

SUPPLY VOLTAGE (E) ACROSS VOLTAGE DIVIDER PROVIDING 1/10 OF E BETWEEN CATHODE AND DYNODE No.1; 1/10 OF E FOR EACH SUCCEEDING DYNODE STAGE, AND 1/10 OF E BETWEEN DYNODE No. 9 AND ANODE.

PHOTOCATHODE IS FULLY ILLUMINATED.

UNIFORM MAGNETIC FIELD PARALLEL TO MAJOR AXIS OF TUBE.

POSITIVE VALUES OF MAGNETIC FLUX ARE FOR LINES OF FORCE TOWARD TUBE BASE.

TUBE IS DEGAUSSED PRIOR TO TEST AND IS AGAIN DEGAUSSED BEFORE FLUX DIRECTION IS CHANGED.

TYPICAL TIME-RESOLUTION CHARACTERISTICS

SUPPLY VOLTAGE (E) ACROSS VOLTAGE DIVIDER PROVIDING 1/10 OF E BETWEEN CATHODE AND DYNODE No.1; 1/10 OF E FOR EACH SUCCEEDING DYNODE STAGE, AND 1/10 OF E BETWEEN DYNODE No.9 AND ANODE.

PHOTOCATHODE IS FULLY ILLUMINATED.
TYPICAL EADCi AND DARK CURRENT CHARACTERISTICS

LUMINOUS SENSITIVITY IS VARIED BY ADJUSTING THE SUPPLY VOLTAGE (E) ACROSS VOLTAGE DIVIDER WHICH PROVIDES 1/10 OF E PER STAGE. LIGHT SOURCE IS A TUNGSTEN-FILAMENT LAMP OPERATED AT A COLOR TEMPERATURE OF 2870 °K. TUBE TEMPERATURE = 22 °C.

EADCi — LUMEN
EADCi — WATT
ANODE DARK CURRENT
ANODE DARK CURRENT
ANODE DARK CURRENT