A HEWLETT-PACKARD 9820A CALCULATOR

OPERATING AND PROGRAMMING

for the
HEWLETT-PACKARD 9820A CALCULATOR

Shown with optional ROM’s installed

Copyright Hewlett-Packard Company 1972

HEWLETT—PACKARD CALCULATOR PRODUCTS DIVISION
P.0O. Box 301, Loveland, Colorado 80537, Tel. {303} 667-5000
Rue du Bois-du-Lan 7, CH-1217 Meyrin 2, Geneva, Tel. (022) 4154 00

TABLE OF CONTENTS

P P P P PP PO OO

PREFACE:
WHEN TO READ THISBOOKix
HOW TO READ THISBOOKix
TERMINOLOGY N P4
FROM COMPUTERS TO THE MODEL 20 O

—o—o—o—o—0—0—- CHAPTERS o —2—e—eo—< o<

CHAPTER 1: GENERAL INFORMATION

MODEL 20 DESCRIPTION 1-1
OWNER'S INFORMATION 1-1
Ordering Printer Paper and Magnetic Cards S
Options .. T B
The Keyboard Magazme e)
Pre-Written Programs12
Service Contracts02
Inspection Procedure e)
Power Requirements T P
Grounding Requirements13
Fuses T e
tnitial Turn-On Procedure14
Loading Printer Paper .. .14
Cleaning the Calculator15
CHAPTER 2: INTRODUCTION TO THE MODEL 20
A SURVEY OF THE CALCULATOR 21
The Keyboard21
The Display - . . - . .« « L0021
The Printer . . . e e e e e s s 22
The Magnetic Card Reader e e e e e s s 22
PLUG-IN ROM'S . . . e e e e e e23
THE CONTROL OF PERIPHERALS .
THE ALGEBRA!IC LANGUAGE e 25
A BRIEF LOOK AT LINES AND STATEMENTS O
THE CONSEQUENCES OF PROGRAMMABILITY 27
THE MODEL 20 MEMORY 27
The Types of Memory - 27
The User's RWM 27
Data Storage e
Program Storage e <
RWM Structure .. O 25 ©
KEYS, AND CHARACTERS IN THE DISPLAY Ce e 29

REVIEW...........................211

TABLE OF CONTENTS i

oo CHAPTERS o< <o oo <

CHAPTER 3: THE MECHANICS OF MODEL 20 OPERATION

THE FUNDAMENTAL PROCESS - S
Initializing the Calculator with Memory Erase e N
Writinga Line oo o341
Maximum Line Length G

MODIFYING A LINE33
Segments oo 33
Exact Substitution of a Segment 33
Removing a Segment 33
Adding a Segment 34
Replacing a Segment 34

EXECUTINGLINES34

SYNTAX ERRORS35

STORING PROGRAMS ... 37
Preliminary Information 37
A Special Property of & 37
Initializing the Program Memory 38
Storing a Single Program 38
Stacking Programs 39
Listing Programs G ¢

MODIFYING INDIVIDUAL PROGRAM LINES310

INSERTING AND DELETING PROGRAM LINES31
Inserting Lines3N1
Deleting Lines e A

REPLACING A PROGRAM LINE e G &]

ADDITIONAL PROPERTIES OF THE EDITING KEYS312
Additional Properties of RECALL G 5
Additional Properties of BACK and FORWARD e e e 0312

RUNNING A PROGRAM .. .313

ERRORS DURING EXECUTION313

TRACE MODE OPERATION314
Keyboard Calculation in the Trace Mode314
Storing Lines While in the Trace Mode314
Running Programs in the Trace Mode314

REVIEW - S 1

EXERCISES316

(continued)

iv TABLE OF CONTENTS

- —o—o—o0—0—o- CHAPTERS <+ 29— <2< <<

CHAPTER 4: NUMERICAL COMPUTATIONS

NUMERICAL QUANTITIES .41
Real Constants a
Real Variables .. 49
Designating a Register .. 42
Significant Digits43

MATHEMATICAL SYMBOLS 44
Arithmetic Operators . .
The Assignment Instruction 458
Multiple Assignment Statements 45
Functions 48
Special Conventions 47
Hierarchy 48
Parentheses . I <

IMPLIED STORE INTOZ49
The Notion of Implied Store 49
Ramifications of the Implied Store410

RULES OF MATHEMATICAL COMBINATION410

EXAMPLES e 0,)

EXERCISES413

CHAPTER 5: THE MODEL 20 LANGUAGE

DEFINITIONS P 9%
Constants and Variables . 51
Quantities52
Literals B2
Flags52
Operators53
Functions 53
Expressions S v |
Values T %
Instructions56
Statements R
Lines0587
Labels A & Sy
Parametersand Lists . b8
Programs b8
Branching58
Relative Addressing59
Symbolic Addressing .. .59
Records59
Subroutines e s ¢

TABLE OF CONTENTS

oo CHAPTERS o2 < <+ <<

CHAPTER 5: THE MODEL 20 LANGUAGE (cont’d)

THE SYNTAX .
Fixed and Float Statements51
Display Statements .b13
Print and Space Statementsb14
Assignment Statements .b16
Enter Statements .518
Absolute Go To Statementsb22
Relative Go To Statementsb22
Labeled Go To Statementsb23
Go To Sub and Return Statementsb24
Location of GTO and GSB ina Lineb27
High Speed Branching .b28
Jump Statements ...529
Restrictions on Branching .53
Flag Statements e e e s 32
If Statements D < S 1
Stop Statements - 1)
End Statements536
Record Statements e s P Y
““Secure’’ Record Statements538
Record ‘“Data’’ Statementsb40
Keyboard Load Statements54
Stored Load Statements e e e e543
Normal and Trace Statementsb44
Miscellaneous O - 2 £ 53

REVIEWb4a7

EXERCISES e %

APPENDIX |
ANSWERS TO THE EXERCISESA1
Chapter 3 Lo AT
Chapter 4o AT
Chapter 5 A2
THE DIAGNOSTIC NOTESA4

{continued}

vi TABLE OF CONTENTS

APPENDIX | (cont'd)

MODEL 20 INTERNAL STRUCTUREA®b6
The KeyboardAB6
The Instruction Buffer .A®6
The Display -« « . . . o . 00000 .00 AT
The Compiler Y A O
The Arithmetic Unit «A7
The Note Generator« « « « « A7
The Result RegisterA7
Execute e e AT
Store o oL oL s AT
The Uncompiler A O
Recall Y 4 O <
Run ProgramAB8
Other OperationsA8

IDIOSYNCRASIES A10

THE PROGRAMMING FORM v ¢

RECOMMENDED ROM CONFIGURATIONS Y W

MODEL 20 KEYBOARD s O ¢

APPENDIX II: MODEL 60 CARD READER

GENERAL INFORMATION A15
Description e e s ATs
Warranty A A 1)
Installation .. A i IS

MARKING MODELG60OCARDS A16

USING THE READER A18
What to putontheCard . . - o A18
The Data Card e A W [e
How the Reader Works . A20

CHANGING THE LAMP e e e .. A0

INDEX . seeback of manual

oo oo o o FIGURES <o oo < <o <o <

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 4-1.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 1-1.
Figure I-2.
Figure [-3.
Figure I-4.
Figure II-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure |I1-6.
Figure |I-7.
Figure [1-8.
Figure 11-9.

TABLE OF CONTENTS

Power Cords

Switch Settings for the Various Nominal Powerline Voltages

The Rear Panel

Loading Printer Paper

Removing the Printer Window .

A Representation of the Model 20 Calculator

A B-inch Magnetic Card

Inserting Magnetic Cards

Some ROM'’s and their Overlays

How Peripherals are Connected

The Model 20 RWM .. .o
A Memory Map lllustrating the Assumptions in the Text
Programs Stacked in the Mainline Programming Area
A Sample Program to be Run in the Trace Mode
Results of Running the Program of Figure 3-3

The Relationship of the Special Mathematical Terms
A Program lllustrating the Use of Local Subroutines
Recording Programs

Recording Data

Loading a Single Program

Stacking Programs

Loading a New Program over an Old Program
Loading Data

Automatic Linking of Programs

The Internal Structure of the Model 20

The Model 20 Programming Form .

The Recommended Configuration for ROM's

The Model 20 Keyboard

Setting the Line Voltage Switch .

Model 9820A Key-Codes
The 9820A Program and Data Card for the Model 60
Inserting a Card into the Reader

The Card Stop in its Extended Position

The Model 20 Data Card

Exposing the Lamp :

Removing the Spare Lamp

Removing the Old Lamp

(continued)

1-2
1-3
1-3
1-5
1-b

. 20
. 23
. 23
. 24
. 25
. 2-8
. 38
. 39
.3-14
.3-15
. 4-7
.b-25
.5-37
.b-41
.b-41
.b-41
.5-42
.5-42
.5-43
. A9

A-11
A-12
A-13
A-15
A-16
A-17
A-18
A-18
A-19
A-20
A-20
A-21

vii

viii

TABLE OF CONTENTS

- oo TABLES o <2< o <o <o <

Table 1-1. Equipment and Accessories Supplied

Table 1-2. Powerline Voltages and Fuses

Table 2-1. Summary of Available ROM’s as of early 1972

Table 2-2. Peripheral Equipment Available as of early 1972

Table 2-3. The Symbols and Mnemonics for the Keys of the Basic Model 20
Table 3-1. Condensed Information About the Notes for the Basic Mode! 20
Table 4-1. The Arithmetic Operators for the Basic Model 20

Table 4-2. Functions and Operations Supplied by the Math ROM

Table I-1. Diagnostic Notes

Table I1-1. Accessories and Eqmpment Supplled with the Model 60 Card Reader

1-1
1-3
2-3
25

.2-10

36
45
4-6

. A4

A-16

oo oo PREFACE = <<+ <+ <+ <

WHEN TO READ THIS BOOK

This manual is a comprehensive description of a sophisticated and
powerful device — the Model 9820 Programmable Calculator. The
functions of training, and of future reference, are of roughly equal
importance in this manual. These goals are met by grouping related topics
together and thoroughly examining them before moving on to the next
group of topics. Thus, it is likely that you will read many pages before
enough information has been covered to allow complete and meaningful
activity.

For the owner of a new and exciting Calculator, such a deliberate
approach is definitely not as satisfying as getting in there and actually
doing something right away. The Simplified Operating Instructions Booklet
was written to provide just such a direct initial approach to the Calculator,
and is definitely a good place to start. In fact, we recommend it, even for
the experienced programmer or calculator user. The deliberate, textbook
approach of this manual will seem more appropriate once you are
acquainted with scope and power of the machine.

HOW TO READ THIS BOOK

Chapter 1 contains the owner’s information for the Model 20. Be sure to
acquaint yourself with the material in that chapter.

Chapters 2 through 5 are meant to be read in order. It is most unlikely,
unless you have already read the manual at least once, that you will be
able to open the manual to any arbitrary point and start reading. The
manual develops its own terminology, and many of the presentations are
heavily based upon previously presented material.

Work the exercises at the end of the chapters — many of them were
drawn from actual experiences during the learning process.

Appendix |l is an operating manual for the Model 9860A Marked Card
Reader, when used in a Model 20 System.

TERMINOLOGY

The Model 20 allows a flexible approach to most problems. This is a result
of the variety in the operations available to the programmer. In fact, there
are far too many variations for all of them to be illustrated by word or by
example. Generally, however, the variations can be derived from the
fundamental cases, provided certain rules are followed.

~—<o—<o <o <o PREFACE << <+ <<

TERMINOLOGY (cont’'d)

In order for a rule to be precise, it must be written with words that have
clear-cut and definite meanings. In an explanation of an algebraic program-
ming language, such as in Chapter 5, certain words having generally
familiar (but also specialized) meanings are needed. We have chosen such
words so that (hopefully) the familiar meaning will intuitively suggest the
specialized meaning in most cases.

In Chapter 5, the necessary words are defined. Some of these words first
appear in Chapter 4, however. While their use may at first appear
somewhat arbitrary, they were chosen to provide an intuitively correct
result on first reading, while later providing a technically correct meaning
if read with the formal definitions in mind.

People seem to have the most trouble with the formal meanings of the
words “value’’, ‘‘quantity’’, and “expression’”’. Study their definitions
carefully. 1t is unfortunate that the casual impressions created by these
words are so close together, while the words have such critical differences
in their assigned technical meanings.

FROM COMPUTERS TO THE MODEL 20

Persons who are familiar with other algebraic programming languages, such
as FORTRAN, ALGOL, BASIC, et. al., will find many familiar concepts,
many different rules, and a few surprises.

Among the notable differences are:

a. What is called a statement in these languages is equivalent to a /ine in
the Model 20’s language.

b. A /ine can be composed of more than one activity (called statements).
This allows horizontal programming (i.e., along the /ine from left to
right by statements) as well as the usual vertical programming (by fines
in their natural order).

c. Variables are subject to a different naming convention, and the

numbering of /ines is different from statement numbering in, say,
FORTRAN.

d. The Model 20's language permits several types of arithmetic assignment
statements. Their use can significantly reduce the amount of program-
ming needed in certain instances.

e. For the most part, the terminology is similar, although in some places,
different. You will still need to read the definitions.

1-1

Chapter 1

GENERAL INFORMATION

This chapter presents a general description of the Hewlett-Packard 9820A Calculator, provides owner's
information, and presents some general information about calculating systems based on the Model 20

Calculator.

—&—<—<—<—<—< MODEL 20 DESCRIPTION << %<

The Model 20 is an easy to use programmable
calculator. The Mode! 20 language is algebraic and
easy to learn, making use of the Calculator quite
straightforward.

A magnetic card reader and a built-in printer add
to the power and convenience of the Model 20.
Both the printer and the large, easy-to-read dis-
play have full alphameric capability.

Programs and data are stored in the same general
memory, so that memory not used for program-
ming can be used for data storage. The basic
Model 20 has 179 registers (with no programs
stored). If the machine is equipped with option
001, it has 435 registers.

Much of the versatility of the Model 20 stems
from its ability to accept as many as three plug-in
ROM’s at any one time (plug-in ROM’s are des-
cribed in the next chapter). The ROM’s adapt the
Model 20 to a wide variety of applications in
varied disciplines by defining the half-keys to have
particular meanings.

Finally, the Model 20 is the heart of a truly
powerful and expandable system. Many peripher-
als and plug-in ROM'’s are available for the Model
20. The Model 20’s language is especially well
suited for the control of peripherals. A Model 20
System with peripherals has a great deal of overall
problem solving power, and because of the alge-
braic language, this power is easy to apply.

———< << OWNER’S INFORMATION << <+ <% <

Table 1-1 shows the equipment and accessories
supplied with the Model 20 Calculator.

ORDERING PRINTER PAPER AND MAGNETIC
CARDS

The printer in the Model 20 uses a special type of
paper, because of the unique way in which the
printer operates. The printer heats small sections
of the paper as it passes through the printer,
causing those sections to change color. The sec-
tions heated correspond to a 5 X 7 matrix of dots
(small squares actually), from which individual
characters are generated.

Thermal printer paper is available in packs of 6
rolls, and in cases of 60 rolls.

Six-pack of thermal printing paper 9281-0401-006

Case of thermal printing paper 9281-0401-060

Table 1-1. Equipment and Accessories Supplied.

Qry. ITEM PART NO.
2 | Simplified Operating Instructions Booklet | 09820—~90000
2 | Operating and Programming Manual 09820—90001
1 Model 20 System Reference 09820-90002
1 Electrical Inspection Booklet 09820-90030
3 | Rolls of Thermal Printing Paper | -----—----- *
6 |10%'* MagneticCards | ---c-—-aan- *
4 | 6" MagneticCards | seees—-a-- *
2 | 8% X 11" Magnetic Card Holder 9230-0052
1 | Pad of Model 20 Programming Forms 09820-90016
1 | Model 20 Math Pac, Vol. 1 09820-70000
1 ac PowerCord | seee—---- *x*
1 Dust Cover 4040-0894
Spare Fuses — all 250V, Normal Blo,
Y in. dia. X 1% in. Ig.
1 1-amp 2110—-0001
1 2-amp 2110-0002
1 6-amp 2110-0056

*See "ORDERING PRINTER PAPER AND MAGNETIC CARDS”
**Different power cords are shipped when requested on the order,
see “OPTIONS".

Prices are available, upon request, from any HP Sales and Service
Office (addresses are at the back of this manual).

1-2 GENERAL INFORMATION

—~o—o—<o—<o—<o—< OWNER’S INFORMATION << <<+ <

ORDERING PRINTER PAPER AND MAGNETIC
CARDS (cont'd)

Magnetic cards are available in lengths of 6 inches
and 10% inches. Cards can be ordered in quanti-
ties of 10 (however, only the 6 inch cards will be
in envelopes). Bulk quantities of cards can be
ordered {without envelopes) in quantities of 100.

10 — 6-inch Cards inenvelopes 5060—9152-010
10 — 10%-inch Cards (no envelopes) . . .9162—-0045-010
100 — 6-inch Cards (no envelopes). 5060-9152—-100
100 — 10%-inch Cards (no envelopes) . . .9162—0045—100

A handy 8% X 11" holder for magnetic cards is
also available. It will hold three 6" cards, or three
10%" cards, or both, and is punched to fit a
3-ring binder. Its part number is 9230—0052.

OPTIONS

The basic Model 20 has a maximum of 179
registers. A register is a unit of memory that can
contain a data number.

A Model 20 with option 001 installed has an
additional 256 registers, bringing the total to 435.
If your Model 20 is equipped with option 001, it
will have a decal, stating the fact, in the indention
behind the printer paper well, which is beneath
the access cover (the right-hand portion of the
Calculator’'s top cover). The decal will mention
429 registers, rather than 435; the decal refers to
the maximum number of ‘R registers’. Each Model
20 also has 6 "alpha registers’.

Option 001 can be installed in the field by
qualified HP service personnel. The part number
of the conversion kit is 11228A.

Various power cords are available for your Calcu-
lator. Their descriptions and part numbers are
shown in Figure 1-1. Contact your local -hp- Sales
and Service office for further information.

Standard

8120-1351

8120-1369 8120-1689 8120—-1348

Figure 1-1. Power Cords.

THE KEYBOARD MAGAZINE

The 'KEYBOARD'’ is a periodic magazine contain-
ing general information about Hewlett-Packard cal-
culators. It includes articles and programs written
by users; descriptions of new equipment and of
new program pacs; programming tips; and other
articles of interest to calculator users.

Your purchase of a Hewlett-Packard calculator
entitles you to a continuing subscription to the
‘KEYBOARD’. In order to place your name on
the subscription list for the ‘KEYBOARD’, please
fill out and return the reply card enclosed with
the Calculator.

PRE-WRITTEN PROGRAMS

Pre-written (and in some cases, pre-recorded) pro-
grams are available for your Model 20. Contact
your local Hewlett-Packard sales representative for
further details.

SERVICE CONTRACTS

Service contracts are available for the Model 20
Calculator, and for other devices in your Model
20 System. Contact any HP Sales Office for
further information.

INSPECTION PROCEDURE

The inspection procedure enables you to confirm
that your Model 20 is operating correctly.

Your Model 20 was carefully inspected both
mechanically and electrically before it was shipped
to you. it should be free of any mars and
scratches or electrical malfunctions upon receipt.
You should carefully inspect your Calculator for
external damage caused in transit, and also check
that the items listed in Table 1-1 are present. If
there is any damage, file a claim with the carrier
and notify HP {addresses of the Sales and Service
Offices are given at the back of this manual).

To check the operation of the Model 20, perform
the inspection procedure given in the Model 20
System Electrical Inspection Booklet. However,
first perform the initial turn-on procedure on page
1-4, and also, load the printer with paper.

GENERAL INFORMATION 1-3

<< OWNER’'S INFORMATION << < <<

POWER REQUIREMENTS

The Model 9820A Calculator has the following
power requirements (refer to Figures 1-2 and 1-3).

LINE VOLTAGE: The Model 20 will operate
from nominal powerline voltages of 100, 120,
220, or 240 ac volts. The range of operation is
within —10% and +5% of those values. Two
switches on the rear panel of the Calculator allow
one of those four voltages to be selected as the
operating voltage. (See Figures 1-2 and 1-3.)

L
L

240V
220V

L

240V
220V

L

100V
120
100V
120
240V
220V
100V
120v
100V
120V
240V
220V

100 volts 120 volts 220 volts 240 volts

Figure 1-2. Switch Settings for the Various
Nominal Powerline Voltages.

NOTE

A different fuse is required at each of the
two voltage ranges of 100—120 vac and
220-240 vac. See "FUSES” for further
information.

Power Outlets for

Peripheral Devices Calculator Fuse Fan Filter

Power Input Main Fuse Powerline Voltage

Switches

Figure 1-3. The Rear Panel.

LINE FREQUENCY: The Model 20 can be
operated on line frequencies of 48 Hz to 66 Hz;

the two frequently encountered frequencies are 50
Hz to 60 Hz.

POWER CONSUMPTION: With no peripheral
equipment attached, the Model 20 requires a
maximum of 150 voltamps.

There are three power outlets on the rear panel of
the Calculator. They are used to supply ac power
to peripheral equipment, and a maximum com-
bined total of 610 voltamps may be drawn from
these outlets. The outlets are not switched on or
off by the power switch of the Calculator, but are
active when the Calculator is plugged in.

GROUNDING REQUIREMENTS

To protect operating personnel, the National Elec-
trical Manufacturers’ Association {NEMA) recom-
mends that the Calculator’s keyboard and cabinet
be grounded. The Calculator is equipped with a
three conductor power cable which, when connec-
ted to an appropriate power receptacle, grounds
the cabinet and the keyboard of the Calculator.

FUSES

The Calcutator has two fuses located on the rear
panel (see Figure 1-3). The main fuse is a 6-amp
fuse. The Calculator fuse is either a 2-amp fuse
for 100/120 vac operation, or a 1-amp fuse for
220/240 vac operation.

The main fuse protects the Calculator and any
devices connected to the three power outlets. The
Calculator fuse protects just the Calculator.

Three spare fuses, a 6-amp, a 2-amp, and a 1-amp

(listed in Table 1-1) are shipped with each
Calculator.

Table 1-2. Power-Line Voltages and Fuses

NOMINAL OPERATING RANGE CALC.
VOLTAGE | (—10%, +5% of nominal) FUSE
100 volts 90 to 105 volts 2-amp
120 volts 108 to 126 volts 2-amp
220 volts 198 to 231 volts 1-amp
240 volts 216 to 252 volts 1-amp

WARNING

BEFORE CHANGING A FUSE, ENSURE
THAT THE CALCULATOR IS DIS-
CONNECTED FROM ANY POWER
SOURCE.

1-4 GENERAL INFORMATION

——<—< <o << OWNER’S INFORMATION << << <

FUSES (cont'd)

To remove a fuse, press inwards on the cap of the
fuseholder, while at the same time twisting the
cap in the direction indicated by the arrow on the
cap. Pull the cap free and remove the fuse. To
install a fuse, place either end of the fuse into the
pocket in the cap, and reattach the cap to the
body of the fuseholder. Do this by pressing
inwards on the cap and twisting it in the opposite
direction of the arrow.

Always be sure that the proper fuses are correctly
installed in the Calculator. Failure to follow this
precaution can defeat the purpose of the fuses,
and result in needless damage to the Caiculator in
the event of certain types of malfunctions or
unusual line voltage conditions.

INITIAL TURN-ON PROCEDURE

With the Calculator disconnected from any ac
power source, verify that the correct Calculator
fuse is installed for the line voltage in your area.
(Refer to the preceding section for information
regarding the fuses.)

The two slide switches located on the rear panel
{see Figure 1-2) must be set to the particular line
voltage to be used. The switches are set by
inserting the tip of a small screwdriver into the
white siot on the switch and then sliding the
switch so that the slot is opposite the line
corresponding to the desired voltage.

Switch the LINE OFF/ON switch, located on the
right front of the Calculator, to the OFF position.
Connect the power cord to the ac power input
connector (see Figure 1-3) at the rear of the
Calculator, and plug the other end of the cord
into a suitable ac power outlet.

Switch the LINE OFF/ON switch to the ON
position; after a few seconds the following display
will appear, indicating that the Calculator is ready
to operate. (Except for the printer — printer
paper must be loaded before it will operate.
Loading printer paper is described in the next
section.)

NOTE

If the Calculator is rapidly switched OFF
and then ON, the display may blank and
the Calculator appear inoperative. To cor-
rect this condition, switch the Calculator
OFF for several seconds, and then turn it
ON again.

If you are turning on a Calculator that has been
transported by any commercial carrier, it is an
excellent idea to verify proper operation of the
Calculator by performing the electrical inspection
procedure given in Model 20 System Electrical
Inspection Booklet.

LOADING PRINTER PAPER

Printer paper is loaded by using the following
procedure {refer to Figure 1-4). The procedure
assumes that the Calculator is turned on.

1. Lift the access cover attached to the Calcula-
tor's top cover.

2. Remove and discard the paper core of any
previous roll. If the remaining roll is small and
a new roll is to be installed, remove the old
roll by:

a. Unrolling and lifting it upwards until the
roll is above the bail, and,

b. Grasping the roll firmly while pulling it
upward and forward; the paper guide will
tear the paper off cleanly.

3. If any paper remains in the printer mechan-
ism, remove it by pressing the PAPER button
while gently putling on the paper as it emerges
from the printer window.

4. Remove the first layer of paper from a new
roll. (A cleanly torn or cut edge is better than
a ragged one, although it usually makes no
difference.)

5. Insert the new roll such that the free paper
end is positioned as shown in Figure 1-4. Be
sure that the bail drops back into place.

GENERAL INFORMATION 1-5

—~—o—<o—<o—<o—< OWNER'S INFORMATION —+—<2—<+—<+—<+ <

6. Press the PAPER button until the paper
advances through the printer mechanism and
appears beyond the printer window. Once in a
while the advancing paper will be trapped
behind the printer window and begin folding
into the available space there. If this should
happen, release the PAPER button immedi-
ately or else the paper may begin to wind
around the platen. Now remove the printer
window (refer to Figure 1-5) and straighten
the paper into its intended position. Then
replace the printer window, and press PAPER
as before.

7. Lower the access cover.

Figure 1-4. Loading Printer Paper.

To remove a partially used roll of printer paper,
follow steps 1 through 3 of the preceeding
procedure.

NOTE

The printer will not operate unless it is
loaded with paper, and any attempted use
of the printer will result in R]
appearing in the display.

CLEANING THE CALCULATOR

The Calculator can be cleaned with a soft cloth
dampened in clean water, or water containing a
soft soap or mild detergent. Do not use an
excessively wet cloth or allow water to penetrate
inside the Calculator! Also, do not use any abra-
sive cleaners, especially on the display window.

The fan filter {located at the rear of the Calcula-
tor) should normally be cleaned about every three
months. Clean the filter by holding it under a
running water-faucet or by washing it in warm
soapy water followed by rinsing in clean water.
Dry the filter thoroughly before installing it.

Turn the Calcualtor off. The filter is removed by
prying it out with a narrow, blunt instrument,
such as a screwdriver or nail file. Insert the
instrument into one of the slots on either side of
the filter, and pry the filter outwards from the
rear panel. To replace the filter, first snap one
side back into place, and then the other.

The printer window can be removed for cleaning,
or to facilitate paper loading, by carefully sliding
it in the manner indicated by Figure 1-5.

Figure 1-56. Removing the Printer Window.

Spring Loaded

Trap Door/

for ROM’s

\Character \Symbol or Character

This Key Clears the Display

ccess ver
| L— A Co

| ——Handle for

/Prin(er Window

Access Cover (Lift)

Display ="
MEMORY {—7DECIMAL7—\
Mnemonic="] [ERasE (FXEDN. FLOATR)
p DIT — —
(homwal TTRace) (Priere] [msent) [Recail” [(acx” [FoRwarg)
O] @ ®
—e - i
L—7% 7 e [T o Ty
LockingStot | "~ 3D D oy [[
for ROM i
Overlay o i _
ey C [R A [N R e
A T CEY RN PR
|
i
[kl pya- 6y Dy OO OV
|
T e R R P e
= S)
Latch for /

ROM Overlay =

DISPLAY
i)

——PROGRAM———
TE Low) lEeom)

T
el alanls
() () () ())

(7 INPUT / OUTPUT———
(ENTER) [oispLay] (PRINT) Seacew:

0

@

\

NOEE0 BOE0®

-
e
J

G0)z =)
(DG e) 6 -

soel | wome)

Lo 00w o) i)

| — Insert Magnetic
Cards Here

| Remove Magnetic
Cards Here

The Three Left-Hand Keyblocks

The Center Keyblock The Right-Hand Keyblock

This Key Causes a Line in the Display
to be Executed (Performed)

Figure 2-1. A Representation of the Model 20 Calculator.

\

Power Switch
(Shown in the
ON position)

Chapter 2

INTRODUCTION TO THE MODEL 20

This chapter presents information about many aspects of the Model 20’s operation. The information is
somewhat general in nature, and intended to lay the foundation for the more specific presentations of the
remaining chapters. Those chapters are written in a way that assumes the reader has a fair amount of
familiarity with the Model 20; this chapter provides that familiarity.

——<—<—<—< A SURVEY OF THE CALCULATOR o<+ <<+

Figure 2-1 is a representation of the Mode! 20
Calculator.

THE KEYBOARD

The center keyblock contains the keys used to
enter numbers and to indicate arithmetic opera-
tions. It also contains some keys used to provide
punctuation for things written in the Model 20’s
fanguage.

The right-hand keyblock contains keys used to
provide access to part of the Model 20’s memory,
and keys to enhance the programmability of the
Model 20.

The three left-hand keyblocks have special signifi-
cance. These keys are used in conjunction with
any plug-in ROM’s that are installed. However,
pressing a key of a left-hand keyblock WhICh |s
not defined by a ROM will result in HTE 11
in the display, unless the key was used in a quote
field. A quote field is a series of keys bounded on
both sides by the * character; quote fields are
used to generate alphameric information.

Each of the three left-hand keyblocks has a
number, and is associated with the ROM slot of
the same number. The numbers are located at the
head of each left-hand key block, and on the
spring loaded trap door over each ROM siot.
Plug-in ROM’s are discussed in “PLUG-IN
ROM’'S”, beginning on page 2-3.

The remaining keys on the keyboard are used for
editing the things you have ‘said’ to the Model 20
in its language, for operating the printer and the
magnetic card reader, and for some other miscella-
neous things listed below.

a. MEMORY ERASE clears and initializes the
entire memory in the same manner as does
turning on the Calculator. See “INITIALIZ-
ING THE CALCULATOR WITH MEMORY
ERASE”, page 3-1.

b. CLEAR removes all information from the dis-
play, and leaves it as follows:

CLEAR does not affect data or programs
stored in the memory!

CLEAR is frequently used to rid the display
of the remnants of a previous operation prior
to beginning a new one. In partlcular CLEAR
is sometimes used to remove a iH{iiTE resulting
from pressing an improper sequence of keys.

c. PAPER is used to manually advance the paper
in the printer. PAPER is called a button to
distinguish it from the keys; PAPER is mech-
anically connected to the printer mechanism,
while the keys are processed electronically.
PAPER cannot be programmed; use SPACE N
for that purpose.

d. FIXED N and FLOAT N are used to control
the form in which processed and computed
numbers are displayed and printed.

e. ENTER provides the handiest and most impor-
tant method of entering data into a program.

THE DISPLAY

The display is the primary means of communica-
tion with the Model 20. /t is used to indicate, in
the Model 20’s language, the activity that the

2-2 INTRODUCTION TO THE MODEL 20

—~—<o—<—<o—< A SURVEY OF THE CALCULATOR <<+ <<

THE DISPLAY (cont’d)

Calculator is to perform. The display is also used
to show the resuits of that activity, display
messages, and to give diagnostic information to
the Operator in the form of notes.

For instance, if you wished to perform a calcula-
tion, it would have to be indicated in the display
before it could be performed. To perform the
calculation (5 + 10)/3, the display would have to

B

To form this display, press:
()5)(+) 1] o

To cause the calculation to take place, press:

EXECUTE

The answer (five) will then appear in the display.

The display can present as many as 16 characters
of information at one time. Each character is
formed from a 5 X 7 matrix of light-emitting-
diodes (LED's).

Although the display is limited to showing only
16 characters at any one time, this does not mean
that the display cannot be used to convey a larger
amount of information®*. Nor does it mean that a
set of directions written in the Model 20’s tangu-
age is limited to 16 keystrokes. (Also, many keys
place more than one character in the display.) If,
while specifying a given activity for the Calcualtor
to perform, the number of characters needed
exceeds the length of the display, the latest 13 to
16 characters worth of information is shown**,
There are also provisions for bringing the earlier
{and now non-visible) characters back into view.
This subject is given considerable attention in
Chapter 3, where the rules are given for generating
and manipulating things in the display.

*16 characters will always be enough to indicate any numerical
answer, however.

**The reason why it is not always simply 16 is given in Chapter 3.

THE PRINTER

The printer can print data, messages, program
listings, and a running record of the Model 20’s
activities.

In general, the printer has the ability to print the
same types of things that can be seen in the
display. However, the PRINT key does not cause
an automatic printing of what is in the display; in
general, the printer will print what it is told to
print, according to the list of items following the
PRINT.

The printer can print as many as 16 characters in
one row (that is, on a line — we won't say ‘line’
however, as we have a different and very impor-
tant use for that word).

One data number or message can be printed per
row. As before, 16 characters will always be
enough to represent any data number. Message
segments are also limited to 16 characters per
row, but the complete message can consist of
more than one row.

The use of the printer is governed by the rules of
the Model 20’s language. Some of this information
is presented in the next chapter, and a complete
presentation is given in Chapter 5.

THE MAGNETIC CARD READER

The magnetic card reader makes a reusable record
of programs and data by magnetically storing the
information on cards coated with a magnetic
material.

The dark shiny surface of a card is the magnetic
coating, and should be protected from scratches
and magnetic objects. The other surface of the
card can be written on, so that the card can be
identified.

A given record (recording) of a program or of
some data is not limited to what may fit on one
card; as many cards as needed can be used to
make the record. However, programs and data
cannot be mixed on the same record.

INTRODUCTION TO THE MODEL 20 2-3

—-o—<o—<——<o—-< A SURVEY OF THE CALCULATOR o —<2—<o—< <

The magnetic coating of a card is divided into two
portions, called ‘sides’. Each side can hold infor-
mation, and each side of a card is independent of
the other. As a card goes through the magnetic
card reader, one side of the card is used (the
right-hand side as viewed from the front of the
Calculator). To use the other side the card is
turned endwise before inserting it into the mag-
netic card reader.

Protect Tab\

~

N
PROGRAM SIDE
r -
[Ti] SALCULATOR PROGRAM CARD PART NO.
< /] HEWLETT-PACKARD 9162 - 0012
L SIDE PROGRAM
/

\Protect Tab
Figure 2-2. A 6-inch Magnetic Card.

It often happens that a program or collection of
data requires several sides to be entirely
recorded®. The usual convention is to number the
sides in the sequence that they were recorded. In
this way they can be reentered in the same
sequence at a later time. The same sequence must
be used or the information will be improperly
loaded into the Calculator.

* 4 . . .
i + will appear if more sides are needed to complete

the current card reader operation. Simply press EXECUTE and
insert the next side.

—~—o—<o—<o—<—<—< PLUG-IN ROM’S

A ROM defines one or more left-hand keyblocks.
When a ROM is installed, one or more overlays
are snapped into place over the appropriate key-
blocks; the overlays indicate how the keys have
been defined. ROM’s and their overlays are user
installable, and a given ROM can be installed in
any of the three slots. Table 2-1 is a summary of
the ROM'’s that are available as this is written.

Each of the ROM slots 1 through 3 corresponds
to the left-hand keyblock of the same number. A
ROM installed in a slot defines the associated
keyblock. However, it is possible for a ROM to
define more than one of the left-hand keyblocks.

The cards themselves are reusable, and new infor-
mation can be recorded over old information,
except as noted below.

Each side of a card can be protected from being
rerecorded, by snapping out the tab on that side.

See Figure 2-2. This action is permanent, and

i3 will result if an attempt is made to
rerecord a protected side of a card.

As with the printer, the operation of the magnetic
card reader is subject to the rules of the Model
20’s language, and its operation is explained in
Chapter b.

This is the Side
Being Used

Figure 2-3. Inserting Magnetic Cards.

Table 2-1. Summary of Available ROM’s
as of early 1972.

MODEL DESCRIPTION

11220A | PERIPHERAL CONTROL | — provides general
purpose control of most peripherals, and features an
especially powerfu! ability to control the 9862A
Plotter.

11221A | MATHEMATICS — provides mathematical functions
such as In, log, sin, cos, and tan, etc.

11222A | USER DEFINABLE FUNCTIONS — allows the user
to write his own mathematical functions and use them
by name, and allows parameter lists to be included in
subroutine calls. Also allows subroutines and functions

to be written in terms of dummy variables.

Additional PERIPHERAL CONTROL ROM'’s will become available.

2-4 INTRODUCTION TO THE MODEL 20

———o—o——o—o— PLUG-IN ROM’'S oo

(cont’d)

This situation occurs when the User Definable
Functions ROM is installed, and one or both of
the remaining left-hand keyblocks are not defined
by other ROM'’s.

Remember, that unless the keys of a left-hand
keyblock have been defined by a ROM, the use of
those keys is limited to generating alphameric
messages {or more correctly, /iterals, as defined in
Chapter 5 — literals have several uses).

There is a series of ROM’s called the Peripheral
Control ROM'’s, which provides the means to
control peripherals for the Model 20 System. Each
of these ROM'’s provides the means for controlling
several different peripherals, and each ROM is best
suited for a certain type of operation.

The keys defined by a ROM are used in accor-
dance with the same general language usage rules
which apply to the basic Model 20 itself. How-
ever, most ROM’s introduce additional usage rules
which must also be observed.

When entering programs from magnetic cards (des-
cribed in Chapter 5), the decision as to which
ROM'’s are to be installed in which slots is usually
not arbitrary, but is determined by the configura-
tion that existed at the time the program was
recorded.

—-—eo—<—o—< THE CONTROL

Table 2-2 lists the peripheral equipment that is (or
is soon to be) available for the Model 20 at the
time this is written.

With the exception of the Model 60 Marked Card
Reader, (whose operation is explained in
Appendix 1), all peripheral equipment is control-
led by keys defined by a Peripheral Control ROM
(P.C. ROM). Each P.C. ROM can contro! most of
the peripherals.

From time to time, new P.C. ROM’s will become
available. These additional P.C. ROM’s will add to
the flexibility of the Model 20 System, by provid-

Figure 2-4. Some ROM’s and their Overlays.

Whenever a program is recorded on a magnetic
card, the configuration of the ROM’s in the slots
is also recorded. When the card is read to put the
program back into the machine, the recorded
configuration is checked against the existing con-
figuration. If a ROM is missing, or in a different
slot, :
information on the card will be transferred to the
Calculator, however, and it is up to the Operator
to decide whether or not to continue with his
activities.

The presence of ROM'’s that were not installed at
the time the card was recorded will not cause
HdTE 1%, as long as they are installed in other-
wise unused slots. (However, since the User Defin-
able Functions ROM can define more than one
keyblock, some programs may require that unused
ROM slots remain empty.)

OF PERIPHERALS &+ << <<

ing a broad mix of peripheral control capabilities,
and also by providing the ability to control the
more sophisticated peripherals that are usually
associated with computer systems.

Each P.C. ROM provides additional language
elements which allow for the actual control of
peripherals. Some of these language elements are
dedicated to specific peripherals, while many of
them are truly ’‘general purpose’, and work with
many peripherals.

Each peripheral connects to the Calculator
through a cable and an 1/0O card. The 1/O card is

INTRODUCTION TO THE MODEL 20 2-5

——<—<o—<o—< THE CONTROL OF PERIPHERALS &+ <<% <+

inserted into one of the four I/O slots behind the
spring loaded trap doors on the rear panel of the
Calculator. See Figure 2-b.

1/0 Slots with Spring Loaded

\To Peripheral

Figure 2-5. How Peripherals are Connected.

1/0 Card

The Model 20 can receive up to four |/O cards,
and thus can control up to four peripherals at one
time. By connecting a Model 9868A /0O Expand-
er, the Calculator can control as many as 13
peripherals.

The control of most peripherals involves a select
code, which indicates the particular peripheral
involved with the external activity. Each type of

peripheral has its own select code. It is sometimes
possible to have two or more of the same type of
peripheral connected to the Model 20 at the same
time, provided that the 1/O cards for the ‘extra’
peripherals have been modified to respond to an
unused select code.

Table 2-2. Peripheral Equipment Available
as of early 1972.

Model Description

9860A Marked Card Reader — reads data and programs from
special cards marked in pencil.

9861A Typewriter OQutput — provides formatted output.

9862A Plotter — provides graphical output as large as 10" X
15".

9863A Paper Tape Reader — allows input of data from paper
tape.

9864A Digitizer — converts graphical data to digital data for
direct use by the Calculator.

9865A Tape Cassette — provides bulk storage on magnetic
tape for data and programs.

9868A I/O Expander — allows as many as 13 peripherals to
be connected at one time to the Calculator.

—-—<o—<o << < THE ALGEBRAIC LANGUAGE <<+ < <

By referring to a ‘Model 20 language’, we mean
there are well defined and systematic ways of
combining certain characters, and that desired
Calculator activity is indicated by ‘legitimate’
combinations of these characters.

By saying that the language is algebraic, we mean
that, as far as computational activities are con-
cerned, the language strongly resembles the
conventional notation used in mathematics. It is
not meant that the Model 20 does algebra, per se.
The Operator must do any algebraic manipulation
of the quantities involved; the Model 20 can only
evaluate algebraic expressions, or perform some
other predetermined activity. i1t cannot, by ordin-
ary means, reduce or otherwise manipulate an
equation. The Model 20 manipulates numbers, not
unknown quantities in the algebraic sense.

Just as the unit of communication in the English
tanguage is the sentence, the unit of communica-
tion in the Model 20’s language is the /ine.

The rules for combining the elements of the
Mode! 20's language into lines are called the
syntax of the language, although we shall often
speak of the syntax of individual statements and
instructions.

There are two important operational consequences
of the Model 20’s algebraic language:

a. Due to the use of conventional mathematical
notation, a computational activity must be
entirely specified before it can be performed.
An expression like 18/3(1+2) is keyed in its
entirety {as a line) before it is evaluated. This
is in contrast with most desk top calculators,
where pressing each key results in immediate
computational activity. The advantage here is
obvious: the user does not need to concern
himself with an analysis of the expression to
determine which keys to press first, in order
to compute the correct result.

2-6 INTRODUCTION TO THE MODEL 20

-—<o—<o—<o—<o—< THE ALGEBRAIC LANGUAGE <22 <o <o <

(cont’d)

b. For the most part, the mechanics of doing
things with lines (entering them, altering them,
and inserting or deleting lines of programs as
discussed later) are quite separate from under-
standing what a particular line will accomplish
when it is performed, and from the syntax
rules used in planning a particular line.

This can be likened to learning to drive a car:
the tasks of learning to start the engine and
operate the transmission can be learned with-
out regard to traffic rules. But before driving,
the traffic rules must also be learned. It is
interesting to note, however, that either body

of knowledge can be learned first. So it is
with the Model 20. But in this manual, we
choose to present the mechanics of operation
first, leaving the reader to learn as much of
the syntax, afterwards, as he chooses.

The rest of this chapter lays the foundation
needed for understanding the mechanics of Model
20 operation, presented in Chapter 3. The presen-
tation of the syntax proper is in the second half
of Chapter 5. However, as with the mechanics,
some preparation for that presentation is needed,
and is contained in Chapter 4, and the first half
of Chapter 5.

—o—<—<— A BRIEF LOOK AT LINES AND STATEMENTS oo

A statement is the smallest complete syntactical
unit which is capable of completely specifying an
activity (but not considering those activities which
fall into the ‘mechanics’ classification — those are
not considered to have any syntax associated with
them).

A line is made up from one or more statements,
separated by semicolons. The number of state-
ments in a line is usually arbitrary, and is
determined by the user according to his feelings at
the time the line is written.

Our purpose here is served by gaining an intuitive
understanding of lines and statements; the terms
are rigorously defined in Chapter 5. For now, an
example will suffice.

The three statements in the line shown in the
example below instruct the Model 20 to:

a. Display or print any numbers as fixed point
numbers with two places to the right of the
decimal point (i.e., the number 18 would be
printed as 18.00).

b. Print the text shown within the guotation
marks exactly as it is given within them, even

though there are numbers in the text that do
not agree with the previous specification as to
the form of numbers.

c. Print the result of the computation 18/3(1+2),
which is 2.00.

The same activity could also be specified with
three separate lines, each containing one of the
statements in the original line.

The execution of a line proceeds by statements
from left to right. Execution within a statement
proceeds according to rules for each individual
type of statement. In the expression 18/3{(1+2),
the 1 and 2 are added, and then multiplied by
three before the division into 18; obviously not
left to right. There are some exceptions to the
rule of line execution by statements, in the left to
right order. These are covered as they occur and
need not concern us here, except to note that the
rule is usually true, though not always.

The mechanics of Model 20 operation provide
means for the alteration of a line prior to its
execution, with or without having to re-write the
entire line.

/ stater|nents \

INTRODUCTION TO THE MODEL 20 2-7

—~—<—<— THE CONSEQUENCES OF PROGRAMMABILITY —&—¢—<

Some of the mechanics of Model 20 operation are
a direct result of the fact that the Model 20 is
programmable. To adequately prepare for the dis-
cussion in the next chapter, we need to define a
program (again, mostly on an intuitive basis), and
present some concepts that relate to the program-
mability of the Model 20.

A program is a sequence of lines which, together,
perform some useful activity. Each line in a
program is associated with a /ine number.(Usually)
the first line in a program is numbered O; the rest
are numbered sequentially with the unsigned
integers 1, 2, etc. The Model 20 itself assigns the
line numbers as the lines are entered as part of
the program.

The lines of a program are executed one at a
time, generally (but not always) beginning with
fine 0. After each line is executed, the one
following it (the one with the next higher line

number) is executed next, unless something in the
previous line alters this.

The program line counter is an entity inside the
Model 20 which keeps track of which line is
currently being executed, or if no line is currently
being executed, the line that will be executed
next. Unless something in the current line alters
the program line counter, the counter is automati-
cally set to the next line in the program when the
current line is finished.

Aided by a syntax for changing the program line
counter, the mechanics of Model 20 operation
provide means to inspect, change, insert and
delete any lines in a program, even after the entire
program has been loaded into the machine, and,
to do so without having to reenter the program
each time such a modification is made. The
procedures for these activities are given in the
next chapter.

—~—o—<—<o—<—< THE MODEL 20 MEMORY & —<¢—<¢ << <

THE TYPES OF MEMORY
The Model 20 has four kinds of memory:

a. Internal Read-Only-Memory {(ROM) — This
memory defines how the Model 20 operates,
and gives each key its individual properties.
ROM is fixed and its contents cannot be
altered.

b. Internal Read-Write-Memory (RWM) — RWM
is memory whose contents can be changed by
the activities of the Calculator. The Model 20
uses internal RWM for its own ‘bookkeeping’
while it accomplishes its calculator activities.

c¢. Plug-in ROM — Plugin ROM'’s are used to
supplement the internal ROM by defining the
keys of the left-hand keyblocks.

d. User RWM — This is the main memory area of
the Calculator, and is the one available for
storing data and programs.

This discussion is primarily about the User’s
RWM, although the other types of memory do
play a part in the explanations to follow.

THE USER’'S RWM

The size of the User’'s RWM (usually measured in
registers) depends upon the presence or absence of
option 001, as well as upon which plug-in ROM’s
are installed. Some plugin ROM’s transform a
small amount of User RWM into Internal RWM,
because of additional internal bookkeeping
requirements.

All RWM is volatile. By this we mean that the
contents of the memory are lost when power is
removed. When power is restored, the memory is
initialized to contain the null program and all
zeros in the data registers. The nu!l program is the
single line program:

2-8 INTRODUCTION TO THE MODEL 20

—~—&—<—<o—<o—< THE MODEL 20 MEMORY &< <+ <+ <

DATA STORAGE

The unit of memory usage for data storage is the
register. A register is a unit of memory that can
hold up to 12 significant digits of a number
within the range —9.99999999999 X 1099 to
—10-9°9, 0, and 10-99 to 9.99999999999 X
10°9.

Registers have names. There are six registers,
called the ‘alpha registers’, whose individual names
are A, B, C, X, Y and Z. There are six keys on
the keyboard, each one of which corresponds to
one of the alpha registers. The six alpha registers
are always available for use.

There are registers, called the ‘R registers’, named
RO, R1, R2, etc. In the basic Model 20 the
highest numbered R register is R172; with option
001 installed, the highest number is 428.

The R registers are designated by the ‘R ()’ key,
followed by other keys to indicate which R
register.

The number of R registers available for the solu-
tion of any given problem varies according to
which plug-in ROM’s are installed and how much
memory is required to store the program{s) used
to solve the problem. This is fuily discussed
below.

PROGRAM STORAGE

The unit of memory usage for program storage is
the line. A line need not have any particular
length, and individual long lines will require more
memory to store than will individual short lines.

RWM STRUCTURE

Figure 2-6 illustrates the structure of the RWM in
the Model 20.

Both programs and data are stored in User RWM;

the amount of memory available for data storage
is whatever is left over from program storage.

Notice that the area for program storage is titled
‘mainline programming’.

Bookkeeping for
Basic Calculator

Plug-in ROM’s

INTERNAL RWM

‘ ‘ ‘ Bookkeeping for

Line @ /

Mainline Programming

~This Boundry Moves
According to the
Amount of
Programming

USER RWM

R Registers

R@

Alpha Registers

s T |
One Word

Figure 2-6. The Model 20 RWM.

When the User Definable Functions ROM is instal-
fed, the programming area of memory can be
divided into the definable function area and main-
line programming area.*

Programs for both programming areas are written
according to the same general procedures, and
most things said in this manual apply to programs
for either area.

The alpha registers are always available, regardless
of how much memory is required to store the
program(s). The highest numbered R registers are
sacrificed first, as the program(s) are stored. R
registers that have been sacrificed, to make room
for programming, or because of the installation of
certain ROM's, are simply not in existence any-
more, and any attempt to access them is an error.

*The User Definable Functions ROM provides quite a bit of addi-
tional capability for handling programs. The subprograms that can be
written using that ROM are not stored or accessed in quite the same
way as are ordinary programs, hence the term ‘mainline programming’
for the ordinary type of programs.

INTRODUCTION TO THE MODEL 20 2-9

—~——<—<o—<o—< THE MODEL 20 MEMORY <<+ <% ¢ ¢

A listing of a program on the printer after the
program has been stored will indicate how many
R registers are available. The last line of the listing
will look something like this: REZ#. In this
instance RO through R79 (a total of 80) are
available.

You should not think of the RWM as being
fundamentally composed of registers. The actual
unit of memory construction is something called a
word. For instance, four words make a register,
and each line is made up of a variable number of
words.

The number of words used in bookkeeping for the
basic Calculator is fixed (256). The number of
words used in forming the 6 alpha registers is also
fixed (24).

The number of words used for internal bookkeep-
ing for each plug-in ROM depends upon the ROM.
For instance, the Mathematics ROM does not use
any, while Peripheral Control { (P.C. I} uses 22
words (the equivalent of B% registers — but it

appears as a loss of 6 R registers, as half a register
is of no use as a register).

Suppose P.C. | and another ROM, that also
requires 22 words of bookkeeping, were both
installed in the Calculator. Either ROM by itself
would consume the memory required for 6
registers, but together, they only use 44 words, or
11 registers.

As each line of programming is stored in memory,
only as many words as necessary are used to
represent the line.

Those words that are left over from all of the
preceeding allocations are grouped into groups of
four, and treated as R registers.

There is a rough rule of thumb which describes
the relationship between the amount of memory
used by a register and by a line. On the average,
every 8 keystrokes of a (stored) line use the
memory required for one register.

——o—< KEYS, AND CHARACTERS IN THE DISPLAY o<+

The keys on the keyboard can be classified into
three groups:

a. The syntax related group, in which each key
either alters a character or places an additional
character in the display. Most keys fit into
this group, and these are the keys used to
write lines.

b. The mechanics related group, whose keys
manipulate individual characters already in the
display, or, do not place an associated
character(s) in the display when they are
pressed.

c. The ambivalent group, whose keys fit into
either of the other two groups, according to
the way they are used. These keys are: STOP,
FIXED N, FLOAT N, NORMAL, TRACE, and
SET/CLEAR FLAG N.

Characters can be classified as symbols, or
grouped together and called mnemonics.

Symbols: i, +, ¥, -, etc.

Mnemonics: iz 7 i

2-10 INTRODUCTION TO THE MODEL 20

—~—<o—<— KEYS, AND CHARACTERS IN THE DISPLAY & —<%—<-

Table 2-3. The Symbols and Mnemonics for the Keys of the Basic Model 20.

IN QUOTE FIELD? IN QUOTE FIELD? IN QUOTE FIELD? IN QUOTE FIELD?
KEY KEY KEY KEY
NO YES NO YES NO YES NO YES
- (@)
R() (Tor] NOTE 2 NOTE 3
_ [e T I A,
E @ = i [Recoro} NOTE 2 NOTE 3
[T .
s NOTE 3 i
--V H
£ k > NOTE 3 %
B -
a @ NOTE 3 i
. GoTo m NOTE 3
DEEEE ; B
- ’ %D :
'b | NOTE 2 @ = NOTE 3
‘ EA S
[i
@ b ‘ NOTE 3 : : NOTE 3
0 | b | NOTE 2 o NOTE 3 ! NOTE 3
(- J N
@ b | NOTE 2 : ‘ NOTE 3 ‘ : NOTE 3 b
CeD These ke he Mechanics G
ENTER h ys are the Nechanics Group
@ b NOTE 2 NOTE 3 and have no Mnemonics or Symbols.
i .
S pirores| [fwores | 1 (e)] — | =
TsET) [ser i) :
""") 2 b | NOTE 2 L NOTE 3 — —
__ [- .
FIXEDN) b | NOTE 2 I NOTE 3 [ctear — —
_) R
[FLoaT) b | NOTE 2 NOTE 3 (Erase — —
[
((e b | NOTE 2 A | NOTE 3 BACK — —
Ty b — NOTE 3 — —
[
@ (eRinT b | NOTE 2 ‘ NOTE 3 DELETE — —
@ [sPaceR’ b | NOTE 2 ! ! NOTE 3 TinseRT — —
_ [—
NOTE 1 ‘NORMAL b | NOTE 2 NOTE 3 RecaLl; — —
_ CRY
@) -+ [rRace. b | NOTE 2 NOTE 3 Cust — —
NOTES
1. The * character never occurs inside a quote field; it is used exclusively to 3. If this key is used outside of a quote field, 11 will result unless the
begin or terminate a quote field. key is defined by a plug-in ROM, in which case the mnemonic or symbol is

determined by the ROM.
2. This key produces one character with an arbitrary pattern. Sometimes the
pattern will vary according to which plug-in ROM’s are installed. 4. The character b denotes a blank space.

INTRODUCTION TO THE MODEL 20

2-11

—o—<o—<— KEYS, AND CHARACTERS IN THE DISPLAY —o—<o—<

(cont’d)

Generally, each key in the syntax related group
corresponds to a particular symbol or mnemonic,
which is placed in the display each time the key is
pressed. A list of keys and their mnemonics is
given in Table 2-3, inside the rear cover, and also
in the System Reference. The table shows the
symbol or mnemonic for each key as it is used
both inside and outside of a quote field (some

keys have two different symbols or mnemonics
under the two different conditions).

The mechanics related group of keys comprise the
bulk of the mechanics of Model 20 operation, and
are explained in detail in the next chapter. The
ambivalent keys STOP, NORMAL, and TRACE
are also explained in the next chapter. The others
of this group are explained in Chapter 5.

- oo REVIEW oo oo o oo

The following important concepts were presented
in this chapter.

1. MEMORY ERASE is used to initialize the
entire memory of the Calculator.

2. CLEAR removes all information from the dis-
play, but leaves the memory unchanged.

3. The Model 20 has an algebraic language, that
is, a formal way of indicating calculations and
other activity, and the notation of the
language resembles that of conventional
mathematics. The rules of the language are
called its syntax.

4. The line is the fundamental unit of communi-
cation with the Mode!l 20.

5. A line is made up of one or more statements,
separated by semicolons.

6. A statement is the smallest syntactically com-
plete unit of the Model 20’s language which
can completely specify an activity.

7. The display is used to indicate the activity the
Calculator is to perform (that is, it shows a
line), and, to indicate results of calculations.

8. A program is a sequence of lines which,
together, perform some useful activity; it is a
recipe for doing something.

9. Each line of a program has a line number.
Line numbers are consecutive and start at
zero.

10. The program line counter keeps track of
which line of a program is currently being
executed, or is about to be executed or stored
next.

11. The amount of Read-Write-Memory available
to the User (User's RWM) is dependent upon:

a. Option 001
b. Plug-in ROM’s

12. RWM is volatile.

13. The unit of memory usage for data storage is
the register.

14. The unit of memory usage for program storage
is the line.

15.On the average, every 8 keystrokes of a
(stored) line use the memory required for one
register.

16. The number of R registers available depends
upon the total amount of User's RWM avail-
able, and the amount of programming that has
been stored; whatever RWM left over is used
as R registers.

17. The printer can print as many as 16 characters
in one row.

2-12

INTRODUCTION TO THE MODEL 20

i ——p——p—— REVIEW o—eo—e—eo o o <o o<

{cont’d)

18.

19.

20.

21.

22.

The PRINT key does not cause an automatic
printout of what is in the display; the printer
will print what it is told to print according to
the list of things following the PRINT.

Each magnetic card has two sides, and each
side can hold information independently of
the other.

Data and programs cannot be mixed on the
same side of a card.

New information can be recorded over old
information, unless that side has been protec-
ted by snapping out the tab.

Plug-in ROM’s are used to define the three
left-hand keyblocks.

23.

24.

25.

26.

Any ROM can be installed in any slot, but the
configuration used will usually make a dif-
ference when the magnetic card reader is
involved.

Peripheral Control ROM’s are used to enable
the Model 20 to control peripherals. The only

peripheral that can be used without a P.C.
ROM is the Model 9860A Marked Card
Reader.

The basic Model 20 can control up to 4
peripherals at one time. With the Model
9868A 1/0 Expander, the number is increased
to 13.

Most of the keys on the keyboard {except the
mechanics related group) have an associated
symbol or mnemonic.

Chapter 3

THE MECHANICS OF MODEL 20 OPERATION

This chapter explains the procedures involved in the writing, modification, and subsequent implementation
of a line. Collectively, this body of knowledge is called the mechanics of Model 20 operation, as it
provides the means for putting the Model 20’s language to work.

—o—<o—<o—<o—<o THE FUNDAMENTAL PROCESS o o< <9<

The user writes lines that convey his intentions.
To do this he presses the proper keys in sequence.
As the keys are pressed, the line appears in the
display. After each line is written, it is either
executed (the activity specified by the line carried
out immediately) or stored as a line in a program.

After a program has been built, it can be run
(each line in the program automatically executed).

INITIALIZING THE CALCULATOR WITH
MEMORY ERASE

Before beginning the solution of a problem with
the Calculator, it is a good practice to initialize
the Calculator by pressing MEMORY ERASE.
However, since this is equivalent to turning the
Calculator off, and then on again (completely
erasing the memory), exercise some care in decid-
ing when to do this; you may inadvertently
destroy someone else’s program.

Pressing MEMORY ERASE does the following
things:
1. Clears all User RWM by:

a. Loading the null program.

b. Zeroing all alpha and R registers.

2. Clears all flags (see FLAGS, page 5-2).

3. Establishes FLOAT 9 with previous FIXED O.
(The significance of the previous FIXED O is
explained in “FIXED AND FLOAT STATE-
MENTS", on page 5-11.)

4. Specifies the Normal Mode ({see TRACE
MODE OPERATION, page 3-14).

B. Scans the ROM slots to determine what
ROM'’s are installed and the amount of RWM
to use for internal bookkeeping.

6. Performs any necessary initialization needed
by ROM’'s which are plugged in, such as
specifying degrees, etc.

WRITING A LINE

If, when beginning to write a new line, you are in
doubt about whether pressing a series of keys will
start a new line, or merely add on to a previous
line, press CLEAR. After that, pressing keys will
start a new line.

Press the keys which produce the desired line in
the display. If you get a Hi2TE in the display,
you have made an error. For now, press CLEAR
and start over. Refer to Table 3-1 for a summary
of the HiiTE's.

As each key is pressed, its symbol or mnemonic is
placed in the display, to the right of any previous
characters in the display. If enough keys are
pressed to fill the display, and then more keys are
pressed, the characters shift to the left to make
room on the right for each additional symbol or
mnemonic. Under these circumstances only the
last 13 to 16 characters placed in the display will
be visible*; however, the non-displayed characters
in the beginning of the line are still recognized as
being part of the line.

*In general, this does not mean that the results of the last 13 t0
16 keystrokes are displayed; most mnemonics have more than one
character. See the next example in the text for why the number of
visible characters is sometimes less than 16.

3-2 THE MECHANICS OF MODEL 20 OPERATION

—~—<o—<—<o—< THE FUNDAMENTAL PROCESS << <<

WRITING A LINE (cont’d)
EXAMPLE

Suppose that you wished to write the line:

PRESS:

press: e (8) (L)« ({8
@ @ , but don’t press @
yet.

At this point the display will be:

(i — j

Notice that the display is full, (that is, it is
occupied by 16 characters, one of which is a
blank) even though only 13 keys have been
pressed.

When the next key of the line is pressed, the
items in the display will shift to the left to make
room for the <. In this case the shift will be four
characters because the left-most item in the dis-
play happens to be F&7Th; a mnemonic of four
characters. Mnemonics are never split; either all of
a mnemonic is visible, or none of it is visible.

PRESS: | 4

After the display has shifted four characters to
the left, and the right-most < and ! are added,
there are still two blank spaces in the right-most
portion of the display. The final display is one of
only 14 characters.

[e T

If the line is composed of more than one state-
ment, each statement must be separated from the
others by a semicolon. No special punctuation is
required at the end of the last statement in the
line.

Suppose you wished to store the number 10 in
register A, the number 20 in register B, and the

number 30 in register C. This activity can be
specified in one line by combining three state-
ments:

After a line has been written it can be executed
{by pressing EXECUTE). After execution, the
display may contain an answer associated with the
line. At this time a new line can be written simply
by pressing the keys that describe the line. As the
first key is pressed, the display is cleared, and the
mnemonic or symbol for that key is placed in the
display.

MAXIMUM LINE LENGTH

The maximum number of keystrokes permitted in
a line is not fixed, but depends upon which keys
are pressed, and upon the order in which they are
pressed. The number of characters needed to
represent the line in terms of its symbols and
mnemonics is not what determines the maximum
length of a given line.

There is no readily understood rule for determin-
ing what the maximum number of keystrokes is
for a given situation. However, its lowest value is
about 35, and its maximum value is about 68:
typically it is around 50. This is high enough to
avoid any practical limitations in the majority of
cases.

If you write a line that is too long, HitTE &%
will appear in the display, and no further entries
will be accepted. The line must be shortened
before it can be used. Press CLEAR and write the
shortened version of the line. Don‘t try to salvage
any portion of a line that is too long by use of
the editing techniques involving BACK or
DELETE! Many times the easiest (or perhaps the
only) thing to do is split the original line into two
lines. Other times, it may be possible to shorten
the line by making more efficient use of the
language.

Some lines can be successfully keyed in, but will
result in Miii % after an attempt to execute
or store the llne Do not attempt to salvage such a
line; press CLEAR and write a shortened version
of the line.

THE MECHANICS OF MODEL 20 OPERATION 3-3

—~—<o—<+—<—< THE FUNDAMENTAL PROCESS &< < <<

The reason for the ambiguity concerning maxi-
mum line length has to do with a process called
compilation, and with the internal structure of the
Model 20’s display. The section in Appendix |

titted “MODEL 20 INTERNAL STRUCTURE”
contains some explanation of the compilation
process and of how it relates to the display.

—o—o—o—o—o—o—o NODIFYING A LINE o—2—o o oo

If a line that has just been written (and not stored
as a line in a program) requires extensive modifi-
cation, or is short enough to rewrite easily, press
CLEAR and rewrite the line. Pressing CLEAR
completely removes a line {or anything else) from
the display.

SEGMENTS

A part of a line which is a sequence of consecu-
tive symbols and mnemonics is called a segment
of that line. A segment of a line can be as short
as a single symbo! or mnemonic, or longer. For
example, #i 2 is a segment of the line:

Modifying a line without pressing CLEAR and
simply rewriting it, involves one or more of the
following situations: adding, removing, or altering
one or more segments of a line.

An alteration of an existing segment may make it
longer (in number of keystrokes — the number of
characters representing the segment do not count),
or shorter, or it may remain the same length
(again as determined by the number of keystrokes
— but the number of characters might change).

EXACT SUBSTITUTION OF A SEGMENT

To substitute a segment of a line with another
segment, when the number of keystrokes in each
segment is equal, press BACK until the left-hand
item of the original segment is the right-most
symbol or mnemonic visible in the display. Then
press BACK one more time.

Now press the keys of the new segment.

Then, if the right-most item of the line is not
visible in the display, press FORWARD until it is.
Now you can continue writing the line, or execute
it, or store it, as is appropriate.

EXAMPLES

Suppose you had written {<-+Zi and then

pressed % when you meant to press . Simply
press BACK, and then .7, and continue writing
the line.

E EE)

The segment i < i needs to be replaced with the
segment 1 Press BACK until is the right-
most character visible in the display. Now press
BACK one more time, followed by the proper
keys: 1 Now press FORWARD until the + is
visible, and continue writing the line.

REMOVING A SEGMENT

To remove a segment from a line, press BACK
until the right-most item of the segment is the
right-most item visible in the display. Now press
DELETE once for each symbol or mnemonic in
the segment to be removed.

Then, if the right-most item of the line is not
visible in the display, press FORWARD until it is.
Now you can continue writing the line, or execute
it, or store it, as is appropriate;

EXAMPLE

Suppose you wished to delete the segment

from the line:

3-4 THE MECHANICS OF MODEL 20 OPERATION

—o—o—o—o—o—o—o NMODIFYING A LINE o—2—o <o o< <o

REMOVING A SEGMENT (cont’'d)
Press BACK until the display looks like:

L R

Now press DELETE 13 times. Notice how at first
the display shifts to the right, bringing the first
part of the line mto view, which in this case is
F#iip. But the ¥ won't appear until there is
room in the display for all four characters. After
the first part of the line comes into view, notice
that the line appears to shorten by losing the
items on the right-hand edge of the display while
the rest of the line does not move. After the
segment has been deleted, press FORWARD until
the end of the now modified line comes into

L j

Now you could continue writing the line, execute
it, or store it, as is appropriate.

NOTE

Never attempt to remove the symbol &
from the end of a line by pressing
DELETE; use BACK instead. Otherwise,
the entire line may be removed.

ADDING A SEGMENT

To add a segment to the interior of a line, press
BACK until the right-most item visible in the
display is the symbol or mnemonic which is to
immediately precede the segment you are planning
to add. Now press INSERT, followed by the keys

which describe the desired segment. Then press
FORWARD until the end of the line is in view.

As the keys following INSERT, but preceding
FORWARD, are pressed, they are inserted into
the line with no loss of any other characters in
the line. The right-hand portion of the line is
shifted to the right to make room for the addi-
tional items being inserted into the line. This
action continues until either BACK, FORWARD,
DELETE, CLEAR, EXECUTE, or STORE is
pressed. Usually the insertion of a segment is
terminated with FORWARD when it is used to
return to the end of a line.

EXAMPLE

Suppose that you wished to insert the segment
: =3 into the line:

Press BACK until : is the right-most item in the
display. Then press INSERT, and write the seg-
ment i. Now press FORWARD unti! the
end of the line is visible.

If you make an error during the entry of a
segment that is being inserted, press DELETE to
remove the unwanted items. Then press INSERT
again, and continue to write the desired segment.

REPLACING A SEGMENT

To replace a segment of a line with another
segment of different length, delete the original
segment and insert the new one in its place.

oo EXECUTING LINES <+ —2—2—<o oo

Once a line has been written, it is executed (the
activity specified by the line accomplished im-
mediately) by pressing EXECUTE. The right-most
item in the line must be visible in the display
before the line can be executed {except as noted
below).

After a line has been executed the display will
depend upon the nature of the line itself. Usually,
the display will contain some type of quantity
that can be considered to be a result of the last
bit of activity accomplished by the line. However,
sometimes the display will contain only the

THE MECHANICS OF MODEL 20 OPERATION 3-5

symbol . This symbol is called the ‘lazy T’, or
the ‘end of line’ symbol.

After a line has been executed, it can be brought
back into the display by pressing BACK or FOR-
WARD, or executed again simply by again press-
ing EXECUTE. The section of Appendix | titled
“MODEL 20 INTERNAL STRUCTURE" offers
some insight as to why this is so.

EXAMPLE

Suppose that you have executed the line:

That placed the number zero into register A.

Now suppose you wrote:

This line adds one to the value already in register
A, and places that new result back into register A.
Thus, the line increments the value of A each
time that line is executed. Also, each time the line
is executed, the result of the operation is placed
in the display (although the line itself is also still
present in the Model 20’s memory). Thus, each
time EXECUTE is pressed, the number in the
display will increase by one: 1, 2, 3,

The syntax of the Model 20’s language consists
largely of rules about what combinations of the
various types of keys (arithmetic operations, the
digits, punctuation, and several other classifica-
tions) are permitted.

Pressing a sequence of keys which does not fit
into any of the combinations allowed is called a
syntax error. Most syntax errors are detected
when they are written.

A syntax error has to do with some breach of
form in a statement, rather than by impossibilities
suggested by the specific (numerical} content of
the statement. Hence, #.- is a syntax error (two
arithmetic operators can appear side by side only
under special circumstances), while an attempt to
store a number into a non-existent R register is
not a syntax error. It is an error during execution,
which is a different class of errors, discussed on
page 3-13.

If while writing a line, you make a syntax error,
the dlsplay will change to one which contains the
word HTE, followed by some number. The

number indicates the general nature of the error.
The line cannot be continued until the error is
corrected Table 3-1 is a condensed list of the
{3 TE’s and their meanings. Appendix | contains
an expanded table of the Notes for the basic
Model 20.

If the line is short, and easily rewritten, you may
wish to press CLEAR, which simply removes the
entire line, and thus the error.

If you wish to salvage the line, press FORWARD;
this will bring the line into view*. Now correct
the line using any of the line modification tech-
niques described earlier in this chapter. Generally,
this will consist of pressing BACK, followed by
the correct key. Other times you might find either
a missing or an extra parenthesis (or some other
thing), and will have to go back into the interior
of the line to change, insert, or delete some item
in order to make the correction.

*If you already know that the error consists of the latest
keystroke being incorrect, simply press BACK, and the display will
appear as it did before the incorrect key was pressed. Now press
the correct key and continue writing the line.

3-6 THE MECHANICS OF MODEL 20 OPERATION

Table 3-1. Condensed Information About the Notes for the Basic Model 20.

INDICATION MEANING

Most syntax errors. Improper key while in Enter Mode.

An instruction is followed by a parameter of the wrong type, illogical value,
or, a parameter is missing.

If flag 14 is not set: Square root of a quantity whose value is negative.

Extra { or missing

Extra i or missing

Parameter out of range when specifying an R register, i.e., too large, or
negative.

Attempt to store a number into something other than a register.

A

" has not been preceded by a matching ?

Improper branching statement.

Attempt to use a line that is too long.

Subroutines nested too deeply.

A computation has resulted in an mtermed te or f|na| numerical result that
is outside the range of the Calculator. i 3 will occur only if flag 14
is not set.

Pressing a key of a left-hand keyblock while an associated plug-in ROM is
not installed, uniess the key is used within a quote field.

Attempt to execute an ENTER statement from the keyboard.

Attempt to store a line when there is insufficient memory to accommodate
it.

No &7Til or i; preceding L
of an existing program.

when loading information under control

Attempt to record on a protected side of a magnetic card.

Magnetic card reader operation is not completed; press EXECUTE and
insert the next side.

4o A program is being loaded from a magnetic card while the three left-hand
"""" keyblocks are not defined in the same way as when the card was recorded.

Attempted printer operation while the printer is out of paper.

THE MECHANICS OF MODEL 20 OPERATION 3-7

PRELIMINARY INFORMATION

A program is formed by writing a series of lines
and storing them. After a line is written, it is
stored in the (mainline) program memory by
pressing STORE. (Unless otherwise specified by
operations available only with an appropriate
plug-in ROM, storing a line always means storing
it into the mainline programming memory.) See
Chapter 5 for information about using the mag-
netic card reader to program the Calculator.

Precisely where in the program memory the line is
stored depends upon the current setting of the
program line counter. For instance, if a line were
stored while the program line counter was set at
2, that line would be physically stored in the
memory immediately following lines O and 1, and
would be designated line 2.

Immediately after a line has been stored, the
display will contain, starting from the left, the
line number assigned to the line, followed by a
colon, followed by as much of the right-hand
portlon of the line as can be displayed, followed
by .

EXAMPLE

Suppose the line shown below was written and
then stored while the program line counter was
set to 15.

([

Then, after pressing STORE the display would be:

(15:]

What appears in the display is a replica of the
line. The replica may appear in slightly altered
form, as compared to the way the line was
originally written. Unnecessary parenthesis are
removed {and in some cases parenthesis are
inserted) by the compiler as the line is stored. The
compiler is briefly discussed in the section of
Appendix Il titled “MODEL 20 INTERNAL
STRUCTURE".

After a line is stored, the program line counter is
automatically set to its next higher value. Thus,

unless the program line counter is somehow
altered prior to the next use of STORE, the next
line stored will have a line number one greater
than the previous line stored. The program line
counter can be controlled from the keyboard with
the END statement and the (absolute)} GO TO
statement. (There are other ways to control the
program line counter, either from the keyboard or
from within a program being run. With regard to
the current topic, see the discussion, on page
3-12, of the additional properties of RECALL,
BACK, and FORWARD.)

When executed from the keyboard, both of the
following statements set the program line counter
to line O:

2711 is the mnemonic for the GO TO key. To set
the program line counter to any other line, say n,

use: ;

With one exception, the program line counter
cannot be set to the number of a line that has not
already been stored.

The exception is this: The program line counter
can be set to the line number to follow the
highest numbered line that has already been
stored.

Suppose that six lines (0 through 5) have already
been stored. Then i
be executed. However, 7, or higher,
result in an error during execution.

will

A major consequence of the preceding rules is
that lines must be stored in the sequence of their
intended line numbers. That is, the line which is
to be line 5 cannot be stored until line 4 has been
stored, and so on, all the way back to line O.
Hence, line 0 must be the first line stored in the
mainline (or any other) program area of RWM.

A SPECIAL PROPERTY OF &

The end statement has a special property: When a
line containing an ERii is stored, any lines with
higher line numbers are removed, and the memory
used by those lines is changed back into R
registers.

3-8 THE MECHANICS OF MODEL 20 OPERATION

-o—o—o—o—o—o— STORING PROGRAMS <o <<

i1 (cont'd)

END also has other properties that are described
in “END STATEMENTS", on page 5-36.

In general, the last line of every program should
contain an end statement.

INITIALIZING THE PROGRAM MEMORY

It is wise to initialize the program area of RWM
before storing a program. The preferred method
of doing this is by pressing MEMORY ERASE. If
you don‘t wish to do that, follow the procedure
given below.

1. Set the program line counter to the line
number at which the program is to begin
(usually that will be line 0, but not always —
it is possible to ‘stack’ programs).

2. Press END, STORE.

3. Set the program line counter back to the line
number at which the program is to begin,

At this time the memory has been initialized;
write the first line of the program and press
STORE.

It is not at all obvious why such an initialization
procedure is necessary. The reason is contained in
the following explanation.

Suppose there were a 45 line program stored in
the Calculator, and that you wished to load a five
line program in its place. If you were to simply
set the program line counter to 0, and then begin
storing the five lines, those five lines would re-
place the original first five lines, but you might
still have a 45 line ‘program’. That would be the
case if the fifth line stored did not contain an end
statement.

Although it is generally a good idea for the last
line of a program to contain an end statement,
there are times {when stacking programs) that it is
desirable that there not be an end in the last line
of a program.

Line @ 1
*{ Line 1 ~
© —_
=
= Line 2
=
) - Line 3
o
[2=
a e
= 4
él ~«—Line 4——}~—L|ne §—
< .
= —
— —————————
—
Line 44 +
Max R Register—> R15
R14
-~ R13

Figure 3-1. A Memory Map Hllustrating
the Assumption in the Text.

In our example, the presence of those extra 40
lines could be detrimental for at least two
reasons: First, those extra lines reduce the number
of R registers available, and those registers lost
may be needed. Secondly, the amount of memory
available might not permit all five lines to be
stored. This could happen if the new five lines
occuppied more memory than the first five lines
of the original program. As each of the new lines
is stored, the lines with higher line numbers are
moved ‘up’ or ‘down’ in the memory to compen-
sate for any difference in line length between the
old and new line. If, in this example, part of line
44 needed to move below RO, H TR s
(insufficient memory) would result.

&N

By first storing an , at the [ine number where
the five lines are to begin, all lines of program-
ming stored below that (lines 1 through 44) are
removed. Then the line consisting of the END is
removed, and the desired lines stored.

STORING A SINGLE PROGRAM

If the mainline program memory is to contain
only a single program, that program is stored by

THE MECHANICS OF MODEL 20 OPERATION 3-9

oo o o oo STORING PROGRAMS 22— >

first initializing the program memory, and then
keying in each line and storing it, beginning at
line O.

EXAMPLE

Suppose you wished to enter the following
program:

To do so, pressi MEMORY ERASE, or END
EXECUTE STORE EXECUTE*.

That initializes the program area of RWM, and
sets the program line counter to 0. Now write
each of the lines, one at a time, beginning with
line 0. After each individual line is written, press
STORE.

(1f you wish, you can run this program after
entering it by pressing END RUN PROGRAM; to
halt the program, press STOP once.)

STACKING PROGRAMS

It is possible to put more than one program in the
mainline programming area. This is called ‘stack-
ing" programs, and is iliustrated in Figure 3-2.

The ability to stack programs is enhanced by the
concepts of relative addressing and symbolic ad-
dressing, which are discussed in Chapter 5. These
techniques make it possible to branch** without
referring to individual line numbers. This is impor-
tant, because when programs are stacked the line
number of each line will depend upon where each
program is placed in the stack. |f the programs are
written using relative or symbolic addressing, they
can be stacked in any desired fashion.

*That sequence of keys is exactly equivalent to the sequence: END
EXECUTE END STORE END EXECUTE. This is because the
Calculator ‘remembers’ the last line it executed or stored.

**Branching is the name describing a program’s ability to automati-
cally go from one part of itself to a different part.

To stack a series of programs, first initialize the
program area from line O onwards. Then store the
first program. Now store the next program. It is
not necessary to do any further initialization of
the program area memory. Continue storing the
programs until they are all stacked.

Line @
Lines @ through, say, & Program 1

<

w

<

- Lines 6 through, say, 17 Program 2

=

s

=

<

[+

o

&

o Lines 18 through, say, 22 Program 3

=

=

=

<

=

Lines 23 through, say, 30 Program 4

R Registers
Alpha Registers

Figure 3-2. Programs Stacked in the Mainline
Programming Area.

LISTING PROGRAMS

After a program has been stored it is often
desirable to obtain a printed listing of the pro-
gram. This is done by setting the program line
counter to the number of the line at which the
listing is to begin (usually a listing of the entire
mainline program area is desired — starting at line
0) and then pressing LIST.

Any of the following key sequences will list a//
programming stored in the mainline programming
area.

END EXECUTE LIST
END LIST

GO TO 0 EXECUTE LIST
GO TO 0O LIST

3-10

THE MECHANICS OF MODEL 20 OPERATION

oo —o—o—o—o STORING PROGRAMS o—eo—o <o o<

LISTING PROGRAMS (cont'd)

The listing is terminated when STOP is pressed, or
when the last line of programming has been listed;
END and STOP statements within the program-
ming will not halt a listing.

A listing of the program in the previous example
looks like:

The last item on the listing is the number of R
registers available. In this particular instance the
listing indicates that RO through R417 were avail-
able for the particular Model 20 configuration
used.

After the listing is completed, the program line
counter is automaticaily set to line O of the
mainline programming area, so that the program is
ready to run; simply press RUN PROGRAM.

A useful method to determine the number of R
registers available without listing the entire pro-
gram memory is to press LIST STOP. A partial
listing will occur, followed by the number of R
registers available.

——<—<—< MODIFYING INDIVIDUAL PROGRAM LINES o<

To modify a stored line of a program, it is
necessary to have a replica of the line in the
display. If a replica of the line is not in the
display, one can be put there by pressing GO TO
n EXECUTE RECALL, or just GO TO n RE-
CALL, where n is the number of the line to be
modified*. A replica of the line will appear in the
display, in the same form that it appeared just
after the line was first stored. The line itself is
still stored in the program memory; the display
will contain only a replica of the line, and not the
actual line itself.

NOTE

The END statement has some very special
properties. If a line containing an END is
stored, or, if a stored line containing an
END is modified, all lines of programming
following that line are removed. For this
reason the END statement is not usually
combined with other statements in a line,
but is used on a line by itself, and then
only as the tast line in the program.

*All that is really required is that the program line counter be at
the line to be recalled before pressing RECALL.

Ignore the line number and the colon following it,
and treat the & at the end of the line as any
other symbol or mnemonic. Modify the line using
any of the methods described earlier in this
chapter.

If your modification left the i~ at the end of the
line intact, press FORWARD until the & re-
appears. When it does, the line (as seen in the
display) will automatically be stored in place of
the original line in the program memory.

If your modification of the line removed the
from the end of the line, press FORWARD if
necessary, to bring the end of the line into view.
Then press STORE. At this time the original line
is replaced with its modified replica.

It is quite possible that the modified replica and
the original line are not the same length. This
causes no problem at all; the stored lines follow-
ing the altered line are automatically shifted to
either make room for a longer line, or to take up
memory left over from shortening a line. Also, the
number of available R registers is adjusted, if
necessary.

THE MECHANICS OF MODEL 20 OPERATION

3-11

—o—<o—o— INSERTING AND DELETING PROGRAM LINES —o—<o—o—

In addition to modifying individual lines of a
program {described in the previous section) it is
also possible to insert entire lines into, or delete
entire lines from, the interior of a program.

Say, for instance, we wished to add a line be-
tween line 4 and line 5. The added line would
become the new line 5, while the old line 5 would
automatically become the new line 6, etc.

Or, suppose we wished to remove line 3 from a
program. The old line 4 would become the new
line 3, and the old line 5 would automatically
become the new line 4, etc.

in both cases, the number of available R registers
is automatically adjusted after the change.

INSERTING LINES

To insert a line into a program, first set the
program line counter to the line number that the
new line is to have. Then write the line and press
INSERT STORE. The new line will be stored, all
succeeding lines of the program shifted to make
room, and their line numbers increased by one. A
replica of the line just inserted will appear in the
display, just as for any line that has just been
stored.

EXAMPLE

Suppose that you wished to add the line:

between lines 0 and 1 of the following program:

First, set the program line counter to 1, as that is
to be the line number of the line after it is
inserted.

PRESS: GO TO 1 EXECUTE

Now write the line:

Then PRESS: INSERT STORE

Pressing END LIST would list the program as
follows:

DELETING LINES

To delete a line from a program, it is necessary to
first place a replica of the line in the display. The
- at the end of the line must be visible in the
display. To get the replica in the display, set the
program line counter to the line number of the
line to be removed, and then press RECALL.
Then press DELETE. The line will be removed,
the lines following the deleted line shifted to take
up the gap in the memory, and their line numbers
decreased by one. After a line, say line number n,
has been deleted, the display will indicate what
the new line number n is; its replica will be in the
display.

EXAMPLE

To delete the line that was inserted in the
previous example (line 1),

PRESS: GO TO 1 RECALL DELETE

3-12

THE MECHANICS OF MODEL 20 OPERATION

—o—<o—< INSERTING AND DELETING PROGRAM LINES —o—<o—<—

DELETING LINES (cont'd)

A listing would reflect the change:

One thing to keep in mind when inserting or
deleting lines is this: References to line numbers
within the program itself may become incorrect,
since it becomes quite possible that not all the
lines comprising the program will have the same
line numbers as they had originally.

—o—<o—<—<o—<o REPLACING A PROGRAM LINE <<+

There are three ways to replace an existing pro-
gram line with another line.

The first way is to set the program line counter to
the number of the line to be changed, write the
line, and press STORE.

The second way is useful if you wish to verify
that the line being replaced is actually the one
you have in mind.

—o—<o— ADDITIONAL PROPERTIES

ADDITIONAL PROPERTIES OF RECALL

Pressing RECALL places into the display a replica
of the stored line specified by the current setting
of the program line counter, and then increments
the value of the program line counter by one.
Thus, pressing RECALL again brings into the
display a replica of the next line in the program,
etc. While the replica of a line is visible in the
display, the line itself is still stored in the program
memory.

If, after recalling every line of a program with
RECALL, RECALL is pressed again, or {which is
the same thing) RECALL is pressed while the
program line counter is set to the first non-
existent line number, the number of available R
registers is printed, and the program line counter
is set back to 0. Further use of RECALL will
begin recalling lines of the program from line 0.

Set the program line counter to the number of
the line, and then press RECALL. This brings a
replica of the line into view. (If at this time you
wish to use BACK to inspect the interior of the
line for further verification, you may do so.) Now
press CLEAR, write the new line, and press
STORE.

The third method is to simply delete the line to
be changed, and insert a new one in its place.

OF THE EDITING KEYS —o—-—

ADDITIONAL PROPERTIES OF BACK AND
FORWARD

Once the replica of a stored line is visible in the
display, pressing BACK will remove the right-most
item of the line from view. If BACK is pressed
enough times to remove the entire replica from
view, pressing BACK one more time will bring a
replica of the preceding line of the program into
the display. It is then possible to step back
through that line, and bring a replica of its
predecessor into the display, etc. This process
deals only with the replicas of the lines; the
stored lines themselves are not altered by this
process.

An analogous thing occurs when using FORWARD
to step through the replica of a stored line. The
difference here is that a replica of the successor of
the current line is brought into the display, rather
than a replica of its predecessor.

THE MECHANICS OF MODEL 20 OPERATION

3-13

——o—<o—<o—<o—o RUNNING A PROGRAM o< << <

If a program begins at line 0, the preferred
method of starting it is to press:

END RUN PROGRAM

GO TO 0 RUN PROGRAM is not recom-
mended, for reasons described in “END STATE-
MENTS", on page 5-36.

If the program begins at some other line number,
n, the preferred method is to press:

END EXECUTE GO TO n
RUN PROGRAM

RUN PROGRAM executes the line in the display
before beginning to run the program at the line
number indicated by the program line counter.
This is why it is not necessary to press END
EXECUTE RUN PROGRAM; END RUN
PROGRAM does the same thing.

To halt a program that is being run, press STOP
one time for about a half second. The program

will halt after completing the line in progress
when STOP was pressed. Depending upon the
nature of that line, the display may contain a
resulting quantity for the line.

if, after the program has been haIted STOP is
Fowill appear |n

pressed again, the mnemonic &7}
the display. If STOP is pressed agaln
will appear in the display, as &7
valid syntax.

After a program has been halted by pressing STOP
(or by a = T# within the program, or by an error
during execution), do not press RUN PROGRAM
to cause the program to continue, unless there are
no subroutines or subprograms used in the overall
program. If there are, start the program over from
the beginning, instead. This is because halting the
program in any way except with an ENTER
statement (see “ENTER STATEMENTS", page
5-18) alters some of the internal conditions neces-
sary to guarantee properly continued execution of
subroutines and subprograms.

——<——<o—<o—< ERRORS DURING EXECUTION —o—<o——<—< <

Not all errors are detected when a line is written.
Most syntax errors are detected when a line is
written, but there is another type of error, calted
an error during execution, which is not.

For example, specifying an R register that does
not exist, and writing an arithmetic expression
that is an arithmetic impossibility due to the
specific numbers involved (logarithms of non-
positive numbers, division by zero, etc.) are things
that result in errors during execution.

If the user wishes, he can instruct the Model 20
to allow most of the arithmetic faux pas that
would otherwise result in errors during execution.
A discussion about this, and a list of the errors
involved is given in rule 11 in “RULES OF
MATHEMATICAL COMBINATION", on page 4-10.

When a line executed from the keyboard {with
EXECUTE) results in an error during execution,

the display will contain a Hii7E. See Table 3-1
and also Appendix |l for information about each
individual i . Pressing BACK will bring the
line into view again. However, that is not re-
quired; no special action is required before
continuing with your activities.

When a line of a program results in an error
during executlon the program halts, and the
words n I+ m appear in the display. The
number n |nd|cates the nature of the error; m
specifies the line number that resulted in the
error. A replica of that line can be placed in the
display by pressing RECALL. However, do not
attempt to restart the program except from its
beginning, unless you are certain that the error
did not occur within a subroutine or subprogram.

The explanations in Chapter 5 of the individual
syntaxes point out what these errors are, so that
you may avoid them.

3-14

THE MECHANICS OF MODEL 20 OPERATION

——o—<—<o—<o—< TRACE MODE OPERATION =<+ <+ <+ <

The Model 20 has a feature, called the Trace
Mode, which enables the Model 20 to make a
printed record of its activities. The form this
printed record takes depends upon what kind of
activity is in progress.

The TRACE key is used to put the Model 20 into
the Trace Mode. When the Model 20 is not in the
Trace Mode it is in the Normal Mode. The
mnemonic for the TRACE key is THi; for
NORMAL the mnemonic is Fii¥. The Model 20
will always be in the Normal Mode immediately
after it is turned on.

TED and Hil% are each complete statements; no
other keys are needed to complete the syntax of
their respective statements.

The Calculator can be placed in the Trace Mode
directly from the keyboard, or by command of a
program. In either instance, the Trace Mode is
established when a line containing a 7 i state-
ment is executed. The same thing applies to the
Normal Mode and the !{i statement.

KEYBOARD CALCULATION IN THE TRACE
MODE

While in the Trace Mode, the Model 20 prints an
exact replica of each line executed from the
keyboard, and the results of any activities in the
line (for those activities which produce a quantity
that can be considered a result; some keys, such
as END and GO TO do not produce such a
guantity).

The fotlowing example should speak for itself:

Those items followed by i in the printout are the
lines that were executed. Immediately below each
line replica are the results of that line.

STORING LINES WHILE IN THE TRACE MODE

While in the Trace Mode, the Model 20 prints a
complete replica of each line as it is stored. This
feature is ‘quite valuable when storing a program
that you are making up as you go along; the
Trace Mode provides you with a printed record to
refer to, so you don’t have to trust your memory
to tell you what you have written so far.

The resulting printed record looks exactly like a
listing, except that the number of R registers
available does not appear on the printout. That
too is easily obtained by pressing RECALL after
the last line has been stored. However, first be
sure that you have stored the last line of the
program, as the program line counter is set to
zero after the number of available R registers is
printed. If you decide to add more lines onto the
end of the program, you will first need to set the
program line counter back to the next line
number to occur in the program, before writing
and storing any lines.

RUNNING PROGRAMS IN THE TRACE MODE

While running a program in the Trace Mode the
Model 20 prints the line number of each line as it
is executed, and below that, any quantities that
were stored into registers by that line. Figure 3-4
shows the resulting printout when the program in
Figure 3-3 is run.

==

g
3
p—

P s)

= H
T owm T

LB i

Az

3

iy,

L R

amy

L1

HOE §5TE b

i

EHI b

o

Figure 3-3. A Sample Program to be Run
in the Trace Mode.

THE MECHANICS OF MODEL 20 OPERATION

3-15

—~—<—<o—<o—<+—< TRACE MODE OPERATION << <% < <

—
LE]

a2

Figure 3-4. Results of Running the Program
of Figure 3-3.

Running a program in the Trace Mode is a
frequently used method to help debug a program
that is not operating as intended. It allows you to
analyze the numbers stored during the execution
of the program. However, it is not intended to be
a means of permanently recording data associated
with a given problem which the Model 20 is to
solve; PRINT is far better suited for that purpose.

Both TRACE and NORMAL are programmable,
and a program can establish the Trace Mode for
al| or part of a program, by having 7= and
riLi statements properly located in it. A program
can {without alteration) be run in the Trace Mode
simply by pressing TRACE EXECUTE before
starting to run the program. This is fine for short
programs which are not especially complex, or do
not have especially long execution times. How-
ever, the wusual way of using TRACE with a

complex program, or one with a long execution
time, is to insert TiI. and Hii} statements into
selected parts of the program After the problem
has been found and corrected, the statements are
then removed. There are several advantages to this
procedure.

First, since only the part of the program suspec-
ted of containing the error is run in the Trace
Mode, the amount of time spent printing is re-
duced to a minimum. Secondly, the amount of
information to be evaluated is held to just the
necessary amount, and no more. Last, but not
least, it saves printer paper.

For instance, if you wished to modify a program
such that it establishes the Trace Mode for lines
13 through 15, add a T&{ statement to the end
of line 12 and a statement to the end of
line 15. This procedure assumes that there are no
GO TO’s or other branching that can lead to line
13, without going through line 12 first.

The Model 20 can be placed in the Trace Mode
while running any program (which does not
execute its own statement) simply by press-
ing TRACE. /[t is not necessary to halt the
program first. Similarly, the Normal Mode can be
reestablished, while the program is running, by
pressing NORMAL.

oo o o oo REVIEW o—o—2o——o o oo oo

The following important concepts were presented
in this chapter:

1. The fundamenta! process of Model 20 opera-
tion is to write a line by pressing the keys
that generate a display that conveys your
intentions. Then the line is either executed or
stored.

2. The maximum number of keystrokes per-
mitted in a line varies with the circumstances.
The maximum number is about 68, and the
probable minimum is 35, with 50 being typi-
cal.

3. If you wish to rewrite a line from its begin-
ning, press CLEAR, and then begin writing the
line again.

4. By using BACK, FORWARD, INSERT, and
DELETE, it is possible to add, remove, or
alter one or more segments of a line without
rewriting the entire line.

5. The mainline programming area begins at line
0. The program line counter determines which
line of a program is under consideration. Lines
of programming must be stored in the order
of their intended line numbers.

3-16

THE MECHANICS OF MODEL 20 OPERATION

—~——>——o o oo REVIEW oo <o < e o <o <

(cont'd)

6.

8.

By using BACK, FORWARD, INSERT, and
DELETE, it is possible to add, remove, or
alter one or more lines of a program without
rewriting the entire program.

Syntax errors must be corrected before the
line can be completed or used in any way.

Errors during execution halt a program.

Answers are on page A-1.

1.

Suppose you were writing a long line and
forgot what the front part of it looked like.
How could you find out?

Suppose you were writing a long line com-
posed of many statements, and the words

o @ appeared in the display. What is
wrong and how do you correct it?

You are trylng to key in the following line,
but get HiiVi @1 in the display before it is
completely entered Why?

You have just written this much of a line:

Now vyou discover that the -+ should have
been a —. What is the easiest way to correct
the mistake?

What sequence of keys would you press to
change the line:

into the line:

without pressing CLEAR and rewriting the
line?

9. STOP also halts a program.

10. Once a program has been halted, it should not

be started over except from its beginning;
unless it is known that the program was not
halted inside a subroutine or subprogram.

11. The Trace Mode provides a printed record of

Model 20 activities. When the Model 20 is not
in the Trace Mode it is in the Normal Mode.
o and ¥

o o o o o oo EXERCISES oo <o <o <o <o <o <

6. You have just stored the first four lines of the

only program that is currently stored in the
Calculator. Upon executlng the line:

: appears in the display. What is
wrong and why?

You have just written and stored a program
while in the Trace Mode. Without listing the
program with LIST, how can you find out
how many R registers are left?

You wish to replace line 3 of a 10 line
program with an altogether different tine of
different length. What sequence of keys would
you press if the new line is:

Both STORE and EXECUTE operate only on
what is ‘visible’ in, and ‘to the left of’, the
display.

Suppose you keyed in the line:

and discovered that a comma was missing
between i and .

Now suppose you used BACK and INSERT to
put the comma after #, but did not use

THE MECHANICS OF MODEL 20 OPERATION

3-17

oo o oo EXERCISES o—<2—eo—e o <o o<

10.

11.

FORWARD to bring the rest of the line in
view, leaving the dlsplay like:

What would happen if you now pressed
EXECUTE or STORE?

Suppose you wanted to modify a 60 line
program by replacing line 31 with an al-
together different line. The original line 31
was 10 keystrokes long, and its replacement is
60 keystrokes |ong While trying to store the
new fine, - 1% appears in the display.
What is wrong?

You have properly loaded a 40 line program
into the Calculator. Suppose that some of its
lines are:

{(Among other things, an il in a program
acts like a ‘go to line zero and stop’.)

Beginning with line zero, you use a series of
consecutive RECALL's to step through the
program on a line-by-line basis. After recalling
line 23, you switch to a series of consecutive
FORWARD’'s to step through each remaining
line of the program. Eventually, the display
gets ‘stuck’ as shown, and does not change as
FORWARD is pressed.
P]

=

Pressing RECALL results in the number of R
registers being printed, and a listing of the
program reveals that lines 30 through 39 are
missing. What happened?

4-0

NOTES

4-1
Chapter 4

NUMERICAL COMPUTATIONS

The purpose of this chapter is to explain how the Model 20 language is used to formulate mathematical
expressions. Mathematical expressions consist of numerical quantities and mathematical operations.
Numerical quantities can be classified as constants and variables, and mathematical operations as arithmetic
operations and functions.

The first part of this chapter deals with the numerical quantities that can be handled directly with the
basic Model 20, and with the nature of the mathematical operations that can be performed with them.
Some mention of the Mathematics ROM (Math ROM) is included so that a complete description of the
nature of mathematical operations on real numerical quantities can be developed.

The latter portion of this chapter is a complete presentation of the general rules of formulating
mathematical expressions.

——o—<o—<o—<—< NUMERICAL QUANTITIES <<+ <+ <<

Numerical quantities in the basic Model 20 can be which corresponds to scientific notation: as a

represented as real constants or as real variables™.
The next four sections explain how this is done.

REAL CONSTANTS

A real constant is a number that is represented as
itself, as a series of digits; e.g., 3.1416, 186000,
1.86E5. (There is another way to represent a
number, which does not directly involve the digits
of the number.) A precise definition of a constant
is given in Chapter 5.

Commas cannot be inserted into numbers for the
sake of their readability; an attempt to do so will
generate a syntax error { £).

There are two forms in which real constants can
be written: fixed point and floating point.

A fixed point number is one which is written with
the decimal point in its true location. For
example, the numbers below are all written in
fixed point.

A floating point number is written in a manner

*The term ‘real’ denotes that the quantity is a representation of a
number that is real in the mathematical sense, as opposed to a
complex number of the form a + bi. However, a ‘real constant’ or
‘real variable’ is, in the strictest mathematical sense, only a rational
number. The square root of two, for instance, can only be repre-
sented as a finite number of digits.

fixed point number multiplied by some integral
power of ten. The integral power used is called
the exponent of the number. However, rather
than write 1.86 X 10°, we let the character E
represent the symbols X 10, and write 1.86E5. &
is the mnemonic for the ENTER EXP key (EXP is
an abbreviation for EXPONENT).

The exponent of a floating point number may be
signed or unsigned, but must contain one or two
digits** and no decimal point or register names.
The largest exponent is E99, and the smallest is
E—99. The exponent may also be zero. Some
valid and non-valid exponents are shown below.

EO3, E3, E+03, and E+3 are all valid and equiva-
lent.

E—05 and E-b5 are valid and equivalent.

E100 and E—100 are not valid exponents. Each
will cause an error during execution; no more
than two significant digits can follow E.

E{1+1) and E2.2 are not valid exponents. Each
will cause a syntax error (! i). The digits
0 through 9, +, and — are only items which can
immediately follow E.

**The only exception to the one or two digit rule is this: leading
zeros are permitted in any exponent, and may make it longer than
two digits. Thus, 2.2E11 and 2.2E0011 are both valid ways of
writing the same number.

4-2 NUMERICAL COMPUTATIONS

—o—o—<o—<o—<o—< NUMERICAL QUANTITIES o -2 <o <o <

REAL CONSTANTS (cont'd)

EY, E-Y, and E(A + B) are not valid exponents.
Each will cause a syntax error. Register names
cannot be used in the specification of an expo-
nent.

E, E+, and E— are not in themselves valid expo-
nents; E must be followed by at least one digit.

The fixed point part of a floating point number
can be written in any permissible fixed point
form. All of the following are permissible floating
point numbers:

There is an easy way to write numbers of the
form 1 X 10", where —99 < n < 99. Instead of
writing forms like .001, or 1E-3 (they are the
same number), simply write E—3. Similarly,
instead of writing —1000, or —1E4, simply write
—E4. When E is not immediately preceded by a
numerical quantity, the Model 20 assumes 1E is
intended.

When a line containing a floating point constant is
stored, the following conventions apply:

a. A leading plus sign on the exponent following
E is dropped. Thus, 2.4E+6 is stored as 2.4E6.

b. Leading zeros in an exponent are retained, but
not counted as part of the two digits allowed
following E. Thus, 5.2E0011 is stored as
5.2E0011.

c. Numbers of the form E£n are stored as 1En
or as 1E—n. Thus, E10 is stored as 1E10,
while E—10 is stored as 1TE—10.

Any listing or display of stored lines containing
floating point constants will conform to these
conventions. The printed or displayed result of
any manipulation of numbers, when in floating
point, also follows those conventions.

To write a real constant, press the keys which
correspond to the symbols and digits (from left to
right) that make up the number.

To write the number —1.34,

D IV N O N N
PRESS: y U \@ A

To write the number 1.26E—b5,

e "\ N
ﬂﬂ 2 ;\—\25:
N -

A

PRESS:

REAL VARIABLES

A real variable is a register containing a number
that could be written as a real constant. The name
of the register can be used in place of the number
itself when writing mathematical expressions. The
Model 20 language also permits other types of
variables. A precise definition of a variable is given
in Chapter b.

The real variables available in the basic Model 20
are the registers A, B, C, X, Y, Z, and the
available R registers.

DESIGNATING A REGISTER

Each of the registers A, B, C, X, Y, and Z, has a
key which corresponds to that particular register,
and no other. The mnemonics of each of these
keys are S|mply the names of thelr respectwe
registers: , L,oE,
one of these reg|°ters S|mp|y have its mnemonic
appear in the appropriate manner in the line being
written.

An R register is designated by writing ¥ (with the
R () key) followed by a (non- negatnve) value
which specifies the intended register. The value
can be a real constant, or a variable name, or a
mathematical expression whose value is to be
computed.

The mnemonic for the R {) key is simply ¥*
The value following R may or may not need to be

*One of the keys in the right-most block of half-keys is the R key.
Under the proper circumstances, it also has the mnemonic R.
However, this is never cause for confusion about which key to press,
or which keys were pressed to produce a particular display. The R
half-key has nothing whatever to do with R register designation; it is
used to specify some activity defined by a plug-in ROM, or to
generate the character R when it is to appear in a quote field. The R
(} key produces a colon when used in a quote field.

NUMERICAL COMPUTATIONS 4-3

—o—o—<—<o—<—<o NUMERICAL QUANTITIES o< < <<

enclosed within parentheses, although that is
always permitted. The following line segments all
designate R35:

provided 35 < R5+C < 36.

No parentheses are required when an R register is
designated by a series of digits immediately
following R, such as R100; however, R (100} is
acceptable. Parentheses are required when the
quantities following R are to be grouped together
and treated as a unit. Thus, R(70/2) denotes R35,
while R70/2 denotes one half of the number
contained in R70. However, forms like RV/4
(meaning R2) do not require parentheses, as there
is only one possible interpretation.

Variable names can appear as part of the value
following R. Thus, if register A contains the
number 15, RA denotes register 15. If R5 con-
tains the number 10, and C contains the number
25, R(R5+C) denotes R3b.

The register denoted by the form RRR ... R
(value* is determined by the value and by the
numbers contained in the various registers. For
example, BR2 denotes R8 if R2 contains the
number 8; in general, it denotes Rn where R2
contains the number n. The length of the form
RRR R {value) is limited only by the maxi-
mum length of the line containing it.

When the value following R is not strictly an
integer, the fractional part of the value is ignored.
Thus, R35.6 denotes R35.

A plus sign immediately following R is dropped
when the line containing it is stored. R+35 is
stored as R35. The form R— is not permitted, and
causes a syntax error (i i) R{(—....) is
permitted, except as noted below.

If R is followed by a value whose integer part is
less than zero, or greater than the number of
available R registers, an error during execution

*The symbols (- -~) denote that whatever is inside them is only
the name of the thing which we wish to indicate as being in that
location, rather than the thing itself. In this case, R (value) means R
followed by some quantity or expression.

results. (The indication will be either i
or HITE s depending upon the exact
circumstances.)

SIGNIFICANT DIGITS

When a number is keyed in as a real constant, it
can contain as many digits as desired, and the
length of the line permits. However, to key in
more than 12 significant digits is wasteful, as
when the line containing the number is executed,
the additional digits are treated as if they were
zeros. In every case, however, the number of
digits to the left of the decimal point, or the
number of consecutive leading zeros to the right
of the decimal point, are counted, so that the true
location of the decimal point will be properly
understood.

As a line containing real constants is executed, the
real constants are converted into an internal form
of 12 significant digits, which is digit-point-digit-
digit-. . .. exponent. All real constants are con-
verted to this form before they are stored into
any registers, or wused in any mathematical
computation,

For example:
(1) 1234567890123456 is stored in a register as:
(2) 1.23456789012E15

The last four digits of the original number (1} are
lost.

Note, however, that the number:

(3) .0000000000000001234567890123456 if
keyed in as shown, is stored in a register as:

(4) 1.23456789012E-16

The consecutive leading zeros after the decimal
point in (3) are not significant.

Either of the numbers (1) and (3) in the example
above could be the fixed point portion of some
floating point number which has its own expo-
nent. When a line containing such a number is
executed, the number is converted to the digit-
point-digit-digit- exponent form. During this
process, the proper exponent for the internal form
is computed. The computed exponent may well
have a higher absolute value than the original

4-4 NUMERICAL COMPUTATIONS

—~—<o—<—<o—<o—< NUMERICAL QUANTITIES o—<—< <o <<

SIGNIFICANT DIGITS (cont'd)

exponent assigned to the number. That is per-
fectly permissible as long as the computed expo-
nent does not have an absolute value greater than
99. This is just another way of saying that
numbers whose absolute values are greater than
9.99999999999E99, or less than 1E—99 {except
for zero}, cannot be entered.

Although all data is understood only to 12 signifi-
cant digits, no more than 10 can be displayed or
printed; the last two digits (called the guard
digits) are used to maintain 10 place accuracy.

The user determines the form in which numbers
are printed or displayed (other than during an
actual keyboard entry or during a listing) by
means of the FIXED N and FLOAT N keys. N
represents the desired number of digits to be
shown to the right of the decimal point, and may
range from 0 to 9, inclusive.

Under a floating point specification, numbers will
always be displayed or printed in the form digit-
point-digit-digit-. . . . exponent.

A number shown under a FIXED N or FLOAT N
specification will always be correctly rounded to

reflect the value of the digits that are not visible.

Not every number can be represented with all (or
sometimes any) fixed point specifications, as some
numbers may have absolute values that are too
large for the current (or maximum) fixed point
specification*. When the current fixed point speci-
fication cannot represent a number, the form is
momentarily changed, for that number only, to
the previous floating point specification. After
that, the form reverts back to the current fixed
point specification.

it sometimes happens that a number, whose abso-
lute value is less that 1, cannot be represented in
fixed point except as .00000 There is no
automatic conversion to floating point under these
circumstances.

These and further properties of the FIXED N and
FLOAT N keys are fully explained in “FIXED
AND FLOAT STATEMENTS”, on page 5-11.

*Physical fimitations are part of the reason for this. To display a
fixed point number in the vicinity of £10*5 would require a display
of at least 48 characters (one for a sign, one for the decimal point,
and 46 for the number). Even if this were done, only the first 12
digits of the number are significant, anyway.

—o——o—<o—-<o—eo—< MATHEMATICAL SYMBOLS << <o <<

The mathematical symbols consist of the
arithmetic operators, and the symbols and
mnemonics for functions.

ARITHMETIC OPERATORS

The arithmetic operators are used to indicate
arithmetic operations among variables and con-
stants. The arithmetic operators available with the
basic Model 20 are shown in Table 4-1.

The plus sign is used in exactly the same way as
in ordinary mathematical notation. A unary plus
sign* is usually used when some sort of visual
emphasis is to be placed on the fact that it is the
actual sign of the quantity (whatever it is) and

*The term unary comes from the fact that in this usage there is only
one number or quantity associated with the operation; usually there
are two, one on either side, and the operation is called a binary
operation.

not its opposite sign that is intended. Since no
sign in front of a guantity means the same thing,
the unary plus sign is not frequently used in the
Model 20 language; in almost every case the
Model 20 drops a unary plus sign when the line
containing it is stored.

The minus sign is also used in exactly the same
way as in ordinary mathematical notation. The
special usage of placing a minus sign in front of a
quantity to indicate that the negative of that
guantity is intended, is called unary minus.

NOTE

A plus or minus sign following E in an
exponent of a floating point number is not
considered an arithmatic operator; it is
simply part of the number.

NUMERICAL COMPUTATIONS

4-5

——o—<o <o —<o—<o MATHEMATICAL SYMBOLS &+ <2< <% <<

Table 4-1. The Arithmetic Operators of the Basic Model 20.
NAME SYMBOL USE
plus addition: &+, # i, etc.
unary plus exact!y i.n =tht:a_sa“me way as irlordinary mathematical
notation: -+ is identical to .
minus | - subtraction: -3,

unary minus | -

times

implied multiply none

of §

slash

division: #

indicates the negative of a quantity: -
multiplication:

multiplication: ¥

% (2 times b),

i instead of ¢ +{. tinstead

nstead of

Z (4 divided by 2),

¥ 1, etc.

The times sign is # rather than X or -, in order
not to produce confusion between the times sign
and the variable X, or the decimal point,
respectively.

Notice that multiplication can be indicated simply
by placing the quantities, to be multiplied, side by
side. In many cases it is necessary to place one or
more of the quantities within parentheses for
grouping, or because of the presence of a unary
plus or minus sign attached to any but the
feft-most factor.

THE ASSIGNMENT INSTRUCTION

A much used instruction in mathematical state-
ments is the assignment instruction: + It stores
the numerical value specified on the Ieft into the
register named on the right. The various uses of
the assignment instruction are fully explained in
‘ASSIGNMENT STATEMENTS’, on page 5-16.

We have already seen several examples of one use
of the assignment mstructlon For example, recall
the statements &, which stores the number 5
|nto register A (‘assigns A the value 5’), and

=, which adds one to the value stored in B.

MULTIPLE ASSIGNMENT STATEMENTS

There are other useful forms of assignment state-
ments, one of which is:

(value) - (register name) — ... - (register name)

For instance, +{ stores the number zero
into the three registers A, B, and C.

Henceforth, increasing use will be made of
notations like:

{mathematical expression) - {real variable)

The major reason for this is that in the majority
of cases, such notations and conventions will
shorten and simplify the text, while at the same
time providing very precise meanings. In the
specific example above, we shall say that the
assignment instruction assigns the variable the
value of the expression.

form

A sometimes useful
statement:

is illustrated by the

This equivalent to the separate statements:

4-6 NUMERICAL COMPUTATIONS

—~—< << <+ < MATHEMATICAL SYMBOLS <&+ —<-—<o < < <

MULTIPLE ASSIGNMENT STATEMENTS (cont’d)

The first item immediately to the right of each -
must be a register name.

This form is often used to save an intermediate
resuit of a computation.

When a form like this is stored, parentheses are
added around various segments of the statement,

involving all «'s except the right-most one. For
instance,

is stored as:

and

is stored as:

If the parentheses were used when the line was
originally written, no additional ones will be
added when the line is stored.

Statements of the form shown below do not
receive additional parentheses when they are
stored.

FUNCTIONS

A function is a computational rule or process
which operates upon a value or values supplied to
it (called the argument of the function), from
which a result is computed, called the value of the
function.

The Model 20 language provides for the use of the
more common mathematical functions. The basic
Model 20 has the square root function (whose

Table 4-2. Functions and Operations Supplied by the Math ROM.

FUNCTION OR MNEMONIC OR NAME
OPERATION SYMBOL
in x LR natural logarithm
eX exponential function
log x common logarithm
log— " x RN antilog (base 10)
ab + exponentiation
sin 0 sine
cos 0 cosine
tan 0 tangent
sin— ' x inverse sine, or arcsine
cos— ' x inverse cosine, or arccosine
tan— 1 x inverse tangent, or arctangent
x| absolute value
integer of x integer
T pi
slecton o dees

t + by itself is not permitted. The simplest form is (quantity) 4 (quantity);

ab is represented by 1 E.

NUMERICAL COMPUTATIONS 4-7

—~—<——<——<o—<o—< MATHEMATICAL SYMBOLS << <% < < <

symbol is {7}, while the Math ROM provides the
additional functions and operations shown in
Table 4-2.

The Math ROM is fully described by its operating
manual. It is mentioned here only for the sake of
completeness in the presentation of the rules for
forming mathematical expressions.

In the Model 20 language, functions can be classi-
fied as supplied functions or as definable func-
tions. A supplied function is one whose computa-
tional rule or procedure is determined by the
design of the basic Model 20 or by the design of
any of the plug-in ROM’'s. The only supplied
function available with the basic Model 20 is I

Definable functions are functions which have all
of the operational properties of the supplied func-
tions, as described below, but whose computa-
tional rules or procedures are specified by the user
himself. These very powerful functions are avail-
able with the Definable Functions ROM.

Each of the supplied functions mentioned to this
point has one argument*. (Exponentiation, ab is
represented by # i, is considered an arithmetic
operation, and not a function.) The argument of
each of these functions can be a real constant, a
variable, an entire mathematical expression, or
even another function. Once the argument of a
function is specified, the mnemonics and symbols
representing the function and its argument are just
another name for a number (although you might
not know what that number is). As such, the
function can be treated in the same way as any
number. For example, all of the following state-
ments are valid:

*It is possible, with the User’'s Definable Functions ROM, to create
definable functions that have multi-parameter arguments. In mathe-
matical terms, these are functions of more than one variable.

SPECIAL CONVENTIONS

Throughout the manuals for the Model 20
System, special meanings are assigned to various
words. Among those are the words variable, con-
stant, quantity, expression, and value.

Variables and constants have already been
mentioned in the beginning of this chapter. All of
these terms are rigorously defined in Chapter 5.
For now, an intuitive understanding of the
remaining terms is sufficient. Refer to Figure 4-1.
A quantity is any single variable or constant.

An expression is a combination of variables,
constants, functions, and operators.

A value is a guantity or expression.

[———VALUES—j

[—QUANTITIESW EXPRESSIONS

VARIABLES CONSTANTS

Figure 4-1. The Relationship of the Special
Mathematical Terms.

EXAMPLES
i is a variable, a guantity, and a value.

----- Z. 14 is a constant, a quantity, and a value.

----- Z. 14 could also be considered an expression.
----- ¥ is not a variable — it is an expression, and a

value. (It can’t be a variable — there is no register
named ‘minus A".)

& is an expression, and a value.

irare variables, as they are simply names

of registers. {The {# -+, if separate,
would be an expression, but the langu-
age unit & is simply a variable.)

4-8 NUMERICAL COMPUTATIONS

——o—o—<o—<o—< MATHEMATICAL SYMBOLS <&*—<—<+——< <<

HIERARCHY

The mathematical operations have a hierarchy
which, in conjunction with parentheses, specifies
the order in which the various operations will be
performed when evaluating a mathematical expres-
sion. The hierarchy is:

First: Functions
Exponentiation
Unary Minus
Implied Multiply
Explicit Multiplication, and Division
Addition and Subtraction, and Unary
Plus

Last: Relational Operators*®

Under the hierarchy, and assuming the absence of
parentheses, any functions in an expression are
performed first, then any exponentiations (avail-
able with the Math ROM), then any implied
multiplications, and so on. If there is more than
one function, or more than one exponentiation,
etc., they are performed from left to right. As
each operation is performed it is replaced by its
numerical result and the process continues.

EXAMPLES

*The Relational Operators {=, #, >, and <} have not been discussed
yet, but since they are subject to the hierarchy, they have been
shown in the list. See ‘'OPERATORS’, on page 5-3.

PARENTHESES

In general, parentheses are used to group quan-
tities and to indicate multiplication in the same
way as in conventional mathematical notation.
The Model 20 language also has special uses for
parentheses that are mentioned as they occur.

For instance, to multiply 9A+7B by 4X+5, you
could write either of:

Tor i

Parentheses can be ‘nested’, that is, a portion of
an expression enclosed in parentheses can enclose
a portion of itself in parentheses:

The ‘depth’ to which parentheses can be nested
(the number of times parentheses can contain
parentheses which contain parentheses), is
limited only by the maximum length of the line
containing the nest. When a line containing paren-
theses is stored, the parentheses are removed by
the compiler. Abundant use of parentheses in a
program does not increase the amount of memory
needed to store it.

The evaluation of an expression within a level of
parentheses (that is, between a ' {’ and its associ-
ated ‘' i’) proceeds according to the same rules as
before, i.e., evaluation from left to right by levels
of the hierarchy. |f this process encounters yet
another level of parentheses, evaluation of the
current level ceases until the new level is evalu-
ated. That level is also evaluated by a left to right
application of the hierarchy, and so on. As evalu-
ation of each level of parentheses is completed,
the evaluation of the previous level is resumed.

Thus in the expression:

The value - is found before any other
computations are performed. Note that i+
also the deepest nest.

However, the deepest nest is not always evaluated
first. Consider:

Here the square root of # is found first, and then
! 71 is found, so that it can be divided into

NUMERICAL COMPUTATIONS 4-9

——o——<—<o—o—< MATHEMATICAL SYMBOLS <<+ <% <

Thus, by grouping things together, parentheses can
be used to force operations to be performed in a
desired order. Consider the following additional
examples, and the effect of parentheses for group-
ing upon the order of operations.

EXAMPLES

Suppose that it was your intention to:

divide

Realizing that :

is incorrect because - Z will not be multiplied
by before the division, parentheses are used
to produce the desired result. It can be done in
several ways.

One way is simply to group the entire denomin-
ator together:

Another way would be to make all of the multi-
plications in the denominator be implied multipli-
cations, so that they would be accomplished prior
to the division:

Perhaps the best way would be to write:

The representation of compound fractions is
another area where parentheses play an important
role in determining the order of operations. To

represent the compound fraction:

‘<|><|U‘|Q

you would write:

Simply writing:

. a S .
represents the fraction , which is definitely
not what was intended*.

Consider the foliowing pair of expressions:

meaning (Va) + b
meaning (V4) a

While it is not surprising that the top expression
means (Va) + b and not v/ a+b, many people at
first make the error of assuming the second
statement means V/4a rather than (v/4)a. The
correct way of writing Vat+b and V/4a are shown
below.

I meaningVat+b
meaning vV 4a

a

*Of course, the compound fraction —g— could always be written in
2
the form 22X which is simply A% E#
bx ' :

—~——<o—<o—<—< |[MPLIED STORE INTO Z -+ < < <+ < <

THE NOTION OF IMPLIED STORE

A statement involving numerlcal act|V|ty usually
contains an instruction, such as #&1, inE
If there is no such lnstructlon the form (quantlty>

automatically assumed when the line is executed
or stored.

The automatic addition of -+ onto the end of a
statement is called the ‘implied store in Z'.

4-10

NUMERICAL COMPUTATIONS

—~—<o—<—<o—<o—< |[MPLIED STORE INTO Z o< < < < <

THE NOTION OF IMPLIED STORE (cont'd)
For instance, if you press A EXECUTE to view

the contents of A, the line FA-+Z is what is
actually executed. The contents of A are seen
because that is the numerical result associated
with the last assignment instruction executed in
the jine. Meanwhile, the contents of Z have been
replaced by those of A, and are lost. The recom-
mended procedure for viewing the contents of a
register is to use the PRINT or DISPLAY state-
ments, as they do not disturb the contents of any
registers.

Because of the implied store into Z, the Z register
is not recommended for storing data during calcu-
lations performed from the keyboard, except in
certain situations. For instance, suppose you
wished to add a series of numbers: n,, n,, 13, ...

First, set Z to zero by executing the line i, Then,
add the numbers by executing the following lines:

<n3> A

Because of the implied store into Z, this is what is

actually happening:

n, +0—~>7
ny, +n, >2
ny +{n, +n,)>2

RAMIFICATIONS OF THE IMPLIED STORE

Implied store can also apply to multiple assign-
ment statements. Consider the statement:

It will be executed or stored as the statement:

However, if the statement were written as:

it would be executed or stored as the statement:

The extra parentheses are added, but since the
original statement already had a - that was not

enclosed in parentheses, the additional -+: was
not added.

———<— RULES OF MATHEMATICAL COMBINATION <<

This section sets forth the rules to be followed
when formulating mathematical expressions.

1. With the exception of rule 2 below, two
operators must not appear side by side.

2. One or more unary plus or minus signs may
appear together or follow a % or .~ or a
relational operator.

——=—H is equivalent to — &

-~ is equivalent to &

+++I is equivalent to E

A+ —E is equivalent to = -

M. —E is equivalent to &+ f

+% is also permitted.

- £l is equivalent to -

3. When two quantities or expressions are written
side by side it is understood that they are to
be multiptied together (implied multiplica-
tion).

4. Parentheses must be used to indicate group-
ings. Parentheses may be nested. Whenever
parentheses are used, they must contain at
least one real constant, or one variable; [i is
not permitted. Parentheses must be balanced;
there must be the same number of { as there
are i at the time the line is executed or
stored.

NUMERICAL COMPUTATIONS 4-11

—~o—<—<— RULES OF MATHEMATICAL COMBINATION &<

The order of operations within an expression
is from the left to right by levels of the
hierarchy:

First: Functions
Exponentiation
Unary Minus
Implied Multiply
Explicit Multiplication, and Division
Addition, Subtraction, and Unary Plus
Last: Relational Operators

When an expression contains other expressions
enclosed within parentheses, the order in
which the expressions are evaluated depends
upon their location with respect to the other
elements of the overall expression and the
hierarchy. When such a nested expression is
reached, the evaluation of the outer expression
is temporarily suspended until the nested one
is evaluated. Then the evaluation of the outer
expression is resumed.

When in doubt about the order in which the
operations of an expression will be performed,
parenthesize!!

A mathematical expression must not start with
an operator, unless that operator is unary plus
Or unary minus.

Unless the argument of a supplied function is
a single real variable, or single real constant, or
another function, the argument must be
enciosed in parentheses. Also, if the argument
is to be preceded with a unary minus, the
entire argument (including the minus sign)
must be enclosed in parentheses®. Thus:

F{A+E1represents v/ atb
I iHEirepresents v ab
—Hirepresents/ —@

represents sin —30

.

*Unary plus can precede the argument of a function without using
parentheses. Thus, I+ is permitted, while ©—H or ' +-H are not.

10. The expressmn = is treated as
PR T repres ntnng (ab)c If ald€) s
de5|red write F 21, (In general, (ab)¢ #
alb€): for instance, (22)3 = 43 = 64, whereas
2(23) = 28 = 256.)

11. Mathematical indiscretions, such as division by
zero, and taking the square root of a negative
value, result in errors during execution. If the
user sets flag 14 prior to the error (see
“FLAGS'", page b-2, for information about
flags) such mathematical errors wiII be
ignored. Otherwise, they will place a i Ein
the display, and halt any program belng run.

Regardless of whether flag 14 is set or not,
such a mathematical indiscretion will cause
flag 15 to be set. Thus, by checking flag 15
after a problem has been solved, it is possible
to determine whether or not any such errors
occurred, even though they may have been
ignored.

The mathematical errors which can cause an
error during execution are listed below.

i. Division by zero.

ii. Square root of a negatlve value. (This does
not mean that | i+ tis not permltted
itself may weII be negative, so that —
is positive.)

iii. Logarithms of zero or of negative values.

iv. Other functions of arguments for which
the function is not defined; for instance,
tan 90°. Also, certain functions have prin-
cipal ranges of arguments so that they may
be mathematically classified as functions.
For instance, the range of the argument
for sin=? x is =1 < x < 1; A&H
results in an error during execution.

v. A legitimate computation which produces
a result (either intermediate or final)
whose absolute value is either greater than
9.99999999999E99, or less than E—99.

In each of these five cases, some number is
associated with the attempted computation, and is
treated as the result, even though this is mathe-
matically incorrect. See the error summary in the
System Reference for what that number is in each
specific case.

4-12 NUMERICAL COMPUTATIONS

——<+—< RULES OF MATHEMATICAL COMBINATION <

12. A statement can consist of several expressions is treated internally by the Model 20 as the
connected by assignment instructions. A state- series of statements:
ment of the form:

(value) =~ {(math expr) = {math expr) =

is permitted as long as the first item after each
<+ IS a register name.

For example:
P After the statement has been completely

[I T NI e J executed, i will contain i " will contain
e R R F++, and R1 will contai

’

——>——o—o—o——o—o—- EXAMPLES <222 o< <<

This section contains some sample expressions and statements that illustrate how the Model 20 language is
used to formulate mathematical computations.

EXPRESSION OR
STATEMENT MATHEMATICAL MEANING

The value of the number 3.14159.

The value of the number 186000.

The value of the number 6.23 X 10—27.
The value of the number which is currently stored in register A (a).
----- The negative of the number which is stored in register B (—b).

Store the number 3.14 into the register A. Whatever may have been
stored in there before is lost (make a equal 3.14).

Store the value of A into B. A remains unchanged (make » equal a).

The difference in the values of » and 10.6.

The sum of a and x.

The product of x and y.
The quotient of x divided by a.
e ik The quotient of y divided by the negative of b.

IH The value of the square root of a.

The quotient of x — y divided by a + b.

x raised to the power of y, (xV).

The reciprocal of aln x.

NUMERICAL COMPUTATIONS 4-13

—p———o—o——o—o—o—o EXAMPLES o —2—e o o <o o<

Mathematical Correct Expression Incorrect Expression
Notation or Statement or Statement

—(a+b)

ax+2

(ax+2) c

(ca)*

ab
Xy

% or iH

Va +b?

B o= ava+b?

Bal=eX +1

‘

Evaluate a = b2 + ¢?

=" is not used
to establish equality. 1t is a
relational operator used to
enquire about equality.

oo oo EXERCISES <+ o o o oo

Answers are on page A-1. £ Vix — 1) + (a — b)?
— 2
1. Write the equivalent expressions or statements g y=ax® +tbx+c
in the Model 20’s language: h. let a =+ 256
(The remaining expressions may require
a. alb +c) the Math ROM.}
b. —(5) i _gb
c. = i la+b)%
X k. €(a + b)
d. -2~ . sin =30
- m. sin x*
b 2
n. sin? x
e. V—la—>b) 0. sinsin x

4-14

2. Locate the errors in each of the following

expressions and statements.

In an attempt to produce this display:

you press:

LDUWESTEHEHYEMN

in the display. What is

-

appears
wrong?

R1 contains 1.0 and R5 contains 2.0. What is
the numerical value of the expression:

What is the actual difference between the
numbers? Is this the same number obtained
upon executing the line? Is the actual differ-
ence within the range of the machine? Explain
what happens when the line is executed.

6.

NUMERICAL COMPUTATIONS

<> —>————o— EXERCISES o2 o o o ——<eo—o

You are debugging a program. You have per-
formed a calculation and stored the result in
register A. Upon executing the line:

The display appears as

(.)

There is a line in your program involving the
segment:

{expression) -+

After a while you discover that the answer is
being placed in R24 instead of R25.

Now that your suspicions are aroused, you
execute the line:

The display appears as:

Why is the value of the expression being
stored in R24, and why is A displayed as
‘exactly’ 25?

Not all calculations done on computers or
calculators turn out as expected, especially
when iterative (repetitive) methods are
involved. This exampie illustrates one type of
thing that can go wrong.

We are going to calculate and print successive
values of x; in the sequence:

X = 1/9
X, =10+ 1/9 — 1 (=1/9)

=10x,_, —1(=1/9)

Notice that each Xx; in the sequence has a
value of 1/9 (1.11111111111E-01).

4-15

NUMERICAL COMPUTATIONS

EXERCISES <o <o <o ¢ < <+ < <

You should see a printout like this:

We can do this easily by first executing the

line:

Now write the line:

Each time EXECUTE is pressed the next x; is

computed and printed.

Press execute at least 25 times.

equal to

really
1.11111111111E-01? (Remember, the printer

d x,

n

Explain why the x; aren’t all equal to 1/9. Are
a

X

while calculations are

10 digits,

performed to 12.)

prints to

5-0

NOTES

Chapter 5

THE MODEL 20 LANGUAGE

This chapter is a formal presentation of the concepts and syntactical rules of the Model 20's algebraic
language.

The first part of this chapter defines the terms used in explaining the syntax, which is presented in the
second part of the chapter. The definitions are used in precise explanations of the various syntaxes.

A formal presentation, based on carefully chosen definitions, systematizes and generalizes the information
— making it possibie to learn only the definitions and some rules, rather than literally hundreds of
individual possibilities.

The material in this chapter is presented in a special format. Each topic is presented in two parts; one part
in the left-hand column, and the other part directly opposite in the right-hand column. The remarks in the
right-hand column lead to an understanding of the material in the left-hand column, or clarify it, or refer
the reader to another section of the manual for additional information. Each topic is terminated by a
horizonta! line.

Persons without programming experience in an algebraic programming language should read the left-hand
column, and then the right-hand section, of each topic. The experienced programmer can probably read
just the left-hand columns; they constitute the formal presentation.

CONSTANTS AND VARIABLES

A constant /s a number that is expressed in an
explicit manner, as part of a line.

A real constant is a number that, in the mathe-
matical sense, is both rational and non-complex.

Numeric constants are often referred to as fixed
point constants, or as floating point constants.
Both types, however, are internally represented in
floating point fashion.

From time to time, different types of constants
may come into existence as new plug-in ROM'’s
add to the Model 20’s language.

A variable is a numeric or logical entity that is
referred to by the name of the register, or other
unit of memory, containing the entity, rather than
by an explicit appearance of the entity itself.

A real variable is one whose value could be that
of any real constant.

In the non-programming sense, a constant is gener-
ally considered to be something whose value does
not change for the duration of the problem. We
use a more restrictive definition to distinguish
between things that are stored in registers (vari-
ables) and things whose values are explicitly in-
dicated by part of a line.

While it is true that, in the problem solving sense,
a number in a register could be used as a
‘constant’, machine and programming considera-
tions make the restrictive definition of a constant
desirable.

In terms of programming, the significant differ-
ence between variables and constants is this: The
value of a variable can be changed by the machine
itself, by following the directions given in a line;
the value of a constant cannot be changed except
by modifying the line containing it.

5-2 THE MODEL 20 LANGUAGE

<o <<+ —<+—< DEFINITIONS

‘Quantity’ /s a general term used to denote any
single constant or variable.

A literal /s a sequence of characters beginning and
ending with quotation marks.

By themselves, literals cannot cause any useful
activity. They are usually used in conjunction
with other instructions, and as /abels.

A flag is a variable whose value is either ‘set’, or
‘clear’, corresponding to the numbers one and
zero, respectively.

A flag is not a rea/ variable.

There are 16 flags, named flag O through flag 15.

lowed by a value which determines the particular
flag intended:

There are instructions to set and clear the flags:

sets flag 14
clears flag 6

The mnemonic i i: is obtained by pressing the
SET/CLEAR FLAG N key twice in succession.

QUANTITIES

LITERALS

FLAGS

(_ QUANTITIESj

VARIABLES CONSTANTS

For further information, see “SPECIAL
CONVENTIONS”, page 4-7.

Literals are used in displaying and printing mes-
sages, and in symbolic addressing. The notion of
symbolic addressing is discussed in “SYMBOLIC
ADDRESSING”, on page 5-9.

In general, flags are not used to represent
numbers; they are used to represent conditions.

These conditions can be determined by the user.
When the condition occurs (perhaps it is detected
by some test in the program) the desired flag is
set {or possibly cleared). Then, at a later time, the
flag can be interrogated (its value checked) and
subsequent activity based on the result. In this
way an event that occurs in one part of a program
can affect events that occur later in the program.

Three of the flags are associated with definite
meanings. If flag 14 is set, certain arithmetic faux
pas, such as division by zero, will be ignored. Flag
15 is automatically set whenever such faux pas
occur. Flag 13 is used in conjunction with the
ENTER statement.

THE MODEL 20 LANGUAGE 5-3

~— o o—p——0——o— DEFINITIONS oo o oo 00—

An operator js a symbol that indicates an activity
to take place upon a single value (a unary opera-
tor), or, between two values (a binary operator).

The wvalues involved in the activity are called
operands.

The arithmetic operators are:

¥ Exponentiation (requires Math ROM)

: Implied Multiply (no symbol)

= Explicit Multiplication

- Division

+ Addition {also unary plus)

----- Subtraction and Unary Minus (negation)

The relational operators are:

= Equals

= Does not Equal

» Greater Than

< Less than or Equal

The arithmetic operators were discussed in Chap-
ter 4, beginning on page 4-4, and are used in the
construction of mathematical expressions.

The relational operators are used in forming refa-
tional expressions, which are used in constructing
tests of numerical relationships.

A function /s a computational rule or process
which operates upon a value or values to produce
a single result.

The value operated upon is called the argument of
the function.

Each individual function has a name.

Supplied functions are those functions whose
names and computational rules are determined by
the design of the Calculator, and cannot be
altered.

Definable Functions (available with the User De-
finable Functions ROM) have names and computa-
tional rules that are determined by the
programmer.

OPERATORS

FUNCTIONS

The arithmetic and relational operators are the
familiar ones that are used in mathematics. As far
as these operators are concerned, the essential
differences between mathematical notation and
the Model 20’s language are these:

1. Raising a number to a power (available with
the Math ROM):

: corresponds to ab.

2. The times sign for multiplication:

- corresponds toa X b ora * b.

3. The equal sign:

- is used in inquiring about possible equal-
|ty between A and B, and corresponds to the
‘a = b' part of the question ‘does a = b?".

To actually make A and B equal (‘let a = '),
i+5, or k-, whichever is appropriate.

4. The relational operator < is not available. To
ask is a < b, use B #

Functions are used in very much the same way as
in conventional mathematical notation. Functions
are discussed in Chapter 4, beginning on page
4-6.

5-4 THE MODEL 20 LANGUAGE

—p—p—o—0——0——0— DEFINITIONS o—o—o—o—o—o oo

An expression /s a valid sequence of variables,
constants, functions, parentheses, and operators.

A mathematical expression is an expression con-
taining no operators other than arithmetic
operators:

NOTE

i i is not considered an expression:
it is simply a variable, even though
<1, if considered by itself, is an
expression.

A relational expression consists of two (or more)
values, separated by one {or more) relational
operators:

The word ‘expression’ will be used to denote any
of the types of expressions that can be written in
the Model 20’s language. Particular types of
expressions will be denoted as ‘mathematical
expression’, ‘relational expression’, etc.

EXPRESSIONS

In casual terms, any collection of quantities that
have been combined with one another is an
expression.

An isolated unsigned constant or variable is not
considered an expression.

The condition of validity, referred to in the
formal definition, is met if the expression con-
forms to some syntax or rule involving the com-
ponent elements of the expression.

The rules of formulating mathematical expressions
are the subject of Chapter 4. The latter part of
this topic is a discussion of relational expressions.

Every mathematical or relational expression has a
numeric value.

The numeric value of a relational expression is:
one if the relationship is true, and zero if it is
false.

The general form of a simple relational expression

is:
(value) {relational operator) {value)

The numeric value of each <{(value) is found,
internally held, and rounded to 10 places. These
rounded values are used in the evaluation of the
expression. The original <{value)s remain
unchanged.

The numeric value of the following mathematical
expression is five:

A relational expression is either true or false, and
has a numeric value of one or zero, respectively.

i 1s certainly true, and has a numeric value
of one.

iis certainly false, and has a numeric value
of zero.

Zican be true or false, depending upon the
numeric values of A and B.

THE MODEL 20 LANGUAGE 5-5

oo o oo DEFINITIONS o229 <o <o <<

Relational expressions can be combined to form
complex relational expressions.

In the absense of parentheses, relational operators
are taken from left to right, and the component
relationships replaced with their equivalent
numeric values.

Thus, the expressions:

and

are each equivalent to:

or

depending solely upon equality between A and B.
The relationships between A and C, and between
B and C, are not involved.

Another form of complex relational expression is
illustrated by:

To evaluate this form, replace each component
relational expression with its value, and evaluate
the simple relational expression.

The expression:

has an overall value of one (true) if:
a. A equals B, and C equals one.
b. A does not equal B, and C equals zero.

On the other hand, it has an overall value of zero
(false) if:

c. A equals B, but C does not equal one.

d. A does not equal B, but C does not equal
zero.

A similar analysis of the expression:

shows that its value is one if:

a. A does not equal B and X is greater than Y.
b. A equals B and X is not greater than Y,

The overall value is zero if:

c. A equals B and X is greater than Y.

d. A does not equal B and X is not greater than
Y.

Relational expressions can be combined with
mathematical operations, or, used as ‘quantities’ in
mathematical expressions. Such expressions are
called mixed expressions.

These types of expressions simply use the values
of the relational expressions as ordinary numeric
quantities. Consider:

Here, the product of the values of the component
relational expressions represents the ‘logical and’
of the conditions ‘A equals B’ and ‘X equals Y.

The only limitation on the size or degree of

sophistication of a mixed expression is the length
of the line containing it.

Mixed expressions find occasional use in just
about every type of computational activity. It
takes a little while to become proficient in their
use, but they can be excellent space savers in a
program. See the exercises at the end of the
chapter for examples.

5-6 THE MODEL 20 LANGUAGE

<< <o <o —<o—<+—< DEFINITIONS

"Value' is a general term used to denote any single
quantity or expression.

The word ‘value’ is used two ways: with the exact
meaning given by the definition, and with the
meaning ‘numerical amount’ in the arithmetic
sense. In places where ‘value’ seems ambiguous,
either meaning can generally be used with success.
Most times the context makes the intended mean-
ing clear.

‘Instruction’ /s a general term used to refer to
symbols and mnemonics that specify some parti-
cular activity, but are neither functions nor opera-
tors. An instruction is simply a command to do
something.

Some examples of instructions are:

STOP
PRINT
DISPLAY
GAZINTA*

*'Gazinta’' is a corruption of the words ‘‘goes into"’.

A statement /s a valid instruction, or a valid
combination of instructions and values.

A literal is not a statement.

VALUES

INSTRUCTIONS

STATEMENTS

[——VALUES——]

(—OUANTITIEST EXPRESSIONS

VARIABLES CONSTANTS

The statement is the smallest complete syntactical
unit which can completely specify an activity*.

Each statement contains at least one mstructuon
=+ is a statement because of the +Z
the implied store into Z.

The condition of validity is met if the statement
under consideration conforms to an established
syntax.

*| iterals can also be ‘complete syntactical units’, but do not, by
themselves, specify an activity.

THE MODEL 20 LANGUAGE

5-7

A line is a sequence of one or more statements
and literals, separated by semicolons.

Literal as a label Statements

Statements

Line |

Literal as part of a statement

Note that the definition of a line has been
broadened, from the definition in Chapter 2, to
allow literals to be used in the line in the same
way as statements are used. This is done to
account for labels (the subject of the next topic).

A label js a literal used as the very first segment
of a line, and separated by a semicolon from the
statements in the line.

Labels provide a method of identifying stored
lines without using their line numbers. This is the
subject of “SYMBOLIC ADDRESSING’, page
5-9.

If the above line were stored in the Calculator,

then the following two statements would be
equivalent:

LINES

LABELS

There is a great deal of pertinent information
about lines. See “A BRIEF LOOK AT LINES
AND STATEMENTS”, page 26, and most
sections of Chapter 3.

The importance of labels and symbolic addressing
is that, while the line number of a line might
change — due to editing — a label remains
unchanged.

5-8 THE MODEL 20 LANGUAGE

—o—o——o—o—o—0——0—- DEFINITIONS o—o—2—<2o o <>

PARAMETERS AND LISTS

A parameter /s a value or literal associated with an
instruction or suitable function.

Certain instructions use parameters to determine
the specific activity to be performed.

A list /s a sequence of one or more parameters
separated by commas.

b \

A program /s a sequence of consecutive lines that,
together, will perform some useful activity once
they are stored in the Calculator.

As each line is stored it is automatically assigned a
line number. Line numbers are unsigned, consecu-
tive integers, beginning with 0.

Branching is the general term used to denote a
program’s ability to alter the natural order in
which the lines of the program are executed.

The Mode! 20’'s language permits both conditional
and unconditional branching.

Although a command to branch can be located
anywhere in a line, the branch itself is always
made to the beginning of a line; there is no way
to branch into the middle of a line.

Branching instructions can be thought of as a
means to control the program line counter.

Addressing is a term that is frequently used in
indicating some specific form of branching.

PROGRAMS

BRANCHING

Some instructions never have parameters or lists
associated with them. Others always have at least
one parameter, while some may or may not
require parameters, depending upon the usage.

Some instructions require that their parameters be
of particular types, that is, their parameters could
be variables, but not constants, or, variables or
constants, but not expressions.

A program is a recipe for doing something.

Chapter 3 contains a great deal of pertinent
information about the mechanics of programming
the Model 20.

The "'SIMPLIFIED OPERATING [INSTRUC-
TIONS” booklet provides some introductory
remarks about programming, intended for the
non- or novice programmetr.

The natural order in which the lines of a program
are executed is simply one after another, in the
sequence in which they are written; that is, in the
order of their line numbers.

The natural order is altered by a line specifying
some line, other than its natural successor, to be
the next line executed.

An unconditional branch is a command which
specifies a branch which is to be accomplished
without any further consideration.

A conditional branch is a command to branch
provided that some condition is met, otherwise
the command to branch is ignored.

THE MODEL 20 LANGUAGE 5-9

——o—o—o——>—9p—o—— DEFINITIONS o—o—o o oo oo

Relative addressing /s a means of branching to a
line indicated as being so many lines before or
after the line containing the branching instruction.

Relative addressing is accomplished with RELA-
TIVE GO TO and JUMP statements. JUMP state-
ments allow the parameter specifying the direc-
tion, and number of lines of the branch, to be
computed at the time the branch is made.

Symbolic addressing is a means of branching to a
line that is identified with a label of the
programmer’s choice.

A record /s a collection of one or more sides of
magnetic card(s) upon which programming or data
has been recorded.

RELATIVE ADDRESSING

SYMBOLIC ADDRESSING

RECORDS

The significance of relative addressing is that it is
independent of the actual line numbers involved.
All that is reqguired is that the lines of the
program be in their original order; the program
itself might be part of a stack of programs.

Symbolic addressing is valuable because it is
totally independent of the line numbers, and of
the sequence, of the lines which constitute the
program,

A time saving technique which is often used in
writing and debugging programs is to use symbolic
addressing in as many of the branching statements
as possible. Then, as lines are inserted and deleted
to bring the program to its proper form, the
addressing stays valid even though the line num-
bers and original sequence are altered. Finally,
once the program is running, the symbolic addres-
sing can be replaced, if desired, with absolute
addressing by line numbers.

A record cannot contain both programming and
data at the same time.

5-10

THE MODEL 20 LANGUAGE

—o—o—o—p—o—o—o—0- DEFINITIONS WM—*—

A subroutine /s a program, or program segment,
which performs some specific task, and is used as
a component in another program.

The subroutines that can be written with the basic
Calculator are called local subroutines to distingu-
ish them from another type of subroutine avail-
able with the User Definable Functions ROM.

Local subroutines are stored in the mainline pro-
gramming area.

Local subroutines are initiated with GO TO SUB
statements, and are terminated with RETURN
statements.

SUBROUTINES

Subroutines are useful as ‘building blocks” when
writing a program, and are used in two general
ways:

a. Certain often needed computational pro-
cedures can be programmed ahead of time as
subroutines, allowing the programmer to com-
bine them as needed in each specific problem.

b. A certain problem may require the same pro-
cedure many times in different parts of the
program. Considerable memory can be saved
by writing a subroutine, and branching to it as
needed.

So far, nothing has been described that would be
impossible using only ordinary branching. With
ordinary branching, however, there is no easy way
for the 'subroutine’ to determine where to branch
back to.

The GO TO SUB and RETURN statements allow
the Calculator itself to know where to branch
back to, and to do so automatically.

The usual method of communication between a
program and a local subroutine is to have the
main program place certain values in registers
before branching to the subroutine. The sub-
routine ‘finds’ its input data in those registers, and
before branching back to the main program,
places the result(s) in some register(s). In the same
way, the main program ‘finds’ the result(s}, and
proceeds with its task.

THE MODEL 20 LANGUAGE 5-11

——o—op—0——0——o—o—0- [THE SYNTAX oo o o oo

This part of Chapter 5 presents the specific syntaxes permitted by the Model 20 without plug-in ROM’s.
The main vehicles for conveying this information are what are called /iteral and figurative syntax forms.
These are supplemented with written explanation and examples.

A literal syntax is an exact and technical description of which types of language elements may occupy
various positions in a given statement. A literal syntax allows you to decide if a statement you have
written is syntactically permissible. Sometimes severa! literal syntaxes will be required to describe all the
variations in form that a particular type of statement may have.

A figurative syntax is less technical, and is a description of what the various language elements in a
statement represent, in terms of the activity caused by the statement. A figurative syntax helps you to
decide if a permissible statement you have written is actually going to do what you had in mind when you
wrote it, or do something else. A calculator or computer does what it was actually instructed to do, not
what someone thought they told it to do.

In showing the syntactical forms that a statement may have, the names of the various language elements
are enclosed within the symbols (. ...), which are used to indicate that their content is only the name of
the thing that is to be in that position, rather than the thing itself.

It often happens that optional language elements are associated with a particular syntax. Such cases will be
indicated by placing the optional item within the symbols [....].

The examples given for a particular syntax will not necessarily illustrate every possible variation.

A special convention is used in the sampie exercises. Except when shown as part of a listing of a program,
the end of line symbol - indicates that EXECUTE should be the next key pressed. For example:

Program listings are easily identified by their shaded backgrounds.

FIXED AND FLOAT STATEMENTS

Literal Syntax: Sample Exercise:

¢ [(value)]

Figurative Syntax: Note that a specification of fixed 0 does not show

a decimal point.

Where 0 < n < 9 is the number of desired places [
to the right of the decimal point.

(continued)

5-12

THE MODEL 20 LANGUAGE

FIXED AND FLOAT STATEMENTS

(continued)

FIXED statements specify fixed point displays
and printouts, while FLOAT statements specify
floating point.

If (value) is not strictly an integer, its digits to the
right of its decimal point are ignored.

4 2 will result if the integer part of
(value) is less than zero, or greater than nine.

Numbers displayed or printed under a fixed or
float specification are always correctly rounded to
reflect the value of the unseen digits. However,
FIXED and FLOAT statements never affect the
appearance of a displayed or printed literal.

(

Note that the right-most digit of the number is 1
rather than O; this is due to rounding.

While the machine is operating under a fixed
point specification, it ‘remembers’ the previous
floating point specification, and vice versa.

The instructions =i and Fi.7, when used with-
out a parameter, specn‘y the|r respectlve forms;
the previous parameter for that form is automati-
cally assumed.

While the machine is running a program, it can be
placed under a fixed point or floating point
specification, without stopping the program,
simply by pressing FIXED N or FLOAT N, res-
pectively. In each case the previous parameter for
that particular form is automatically assumed. Of
course, this action is subject to FIXED and
FLOAT statements within the program itself.

When the machine is turned on, or |n|t|a||zed W|th
MEMORY ERASE, the specification L. 7T
with a previous specification of
lished.

.=,

is estab-

Sample Exercise:

THE MODEL 20 LANGUAGE

oo oo THE SYNTAX

A number that is too large to be displayed or
printed under the current fixed point specification
will appear in a form determined by the previous
floating point specification. (The current specifica-
tion remains as fixed point, however.)

There is no reversion to floating point when a
number is small enough to appear as .0000. ..

Executing a FIXED or FLOAT statement will not
interfere with the display of an answer already
visible in the display.

Literal Syntax:

7 [dist)]

Figurative Syntax:

~ parameter,, parameter,, ...

The DISPLAY statement causes each item in the
parameter list to be shown in the display. The
parameters are displayed individually, and in the
left to right order of the parameter list. Each
parameter is visible for approximately .175
seconds.

If a DISPLAY statement is executed from the
keyboard, the last parameter in the list will re-
main visible until some other activity is
performed.

Parameters other than literals are displayed: on
the right side of the display; as their respective
numeric values; and according to the current fixed
or floating point specification.

Literals are displayed as the text of the literal,
and on the left side of the display. If the literal is
longer than 16 characters, only the left-most 16
will be displayed.

DISPLAY STATEMENTS

5-13

Sample Exercise:

(

In fixed point, the sum of the number of digits to
the left and to the right of the decimal point
must not exceed 10, or the number will be shown
in floating point.

Sample Exercise:

5-14 THE MODEL 20 LANGUAGE

it ip—p—ap—————@— THE SYNTAX oo oo o o

DISPLAY STATEMENTS

{continued)

The syntax: Sample Exercise:

Flist) "bbbbTH

displays all the parameters in the list, and, causes
the last parameter in the list to be displayed one
additional time for each extra IizF

The first DISPLAY statement in a line should be —_—
followed by a list; using & without a list is not (s I A J
recommended except as shown in the above ‘

syntax. It is also recommended that the sequence @ @ @—————T T

of DISPLAY statements be a continuous one, (“““ }
without any other type of statements in the ‘

middle of the sequence. [}

PRINT AND SPACE STATEMENTS

Literal Syntax: Sample Exercise:

T dlist)

Figurative Syntax:

I parameter,, parameter,, . ..

The PRINT statement causes each item in the
parameter list to be printed by the printer. Each
parameter is printed on a row by itself; the order
in which the parameters are printed is the left to
right order of the parameter list.

[f a PRINT statement is executed from the key-
board, the last parameter in the list will remain
visible in the display until some other activity is
performed.

Parameters other than literals are printed: on the

right side of the paper; as their respective P B

numerical values; and according to the current L FE
fixed or floating point specification.

Literals are printed as the text of the literal, and
on the left side of the paper. If the literal is
longer than 16 characters, only the left-most 16
will be printed.

THE MODEL 20 LANGUAGE

5-15

o o—o—9o—0— JHE SYNTAX oo o o oo

The syntax:

P st F FRT

behaves in a manner analogous to the DISPLAY
statement of the same form. See the previous
section.

Literal Syntax:

© [value)]

Figurative Syntax:

Where 0 < n < 15 is the number of rows the
printer paper is to be advanced.

SPACE statements are used to advance the printer
paper, under the control of the Calculator.

SPACE statements are written with the SPACE N
key, and should not be confused with statements
involving SPACE (a key in the left-most keyblock)
or with PAPER, {(a mechanical method of
advancing the paper).

If (value} is not strictly an integer, the digits to
the right of the decimal point are ignored.

ROTE @2 will result if the integer part of
(value> is less than O, or greater than 15.

=i by itself is equivalent to ZFiI i, but is a
keystroke shorter.

A SPACE statement generally clears the display
when it is executed.

Sample Exercise:

1 does not advance the paper.

5-16

THE MODEL 20 LANGUAGE

iy —p——p——p——p——@— THE SYNTAX —o—o—o o0 oo oo

ASSIGNMENT STATEMENTS

Literal Syntax:
(value) -+ {real variable)
Figurative Syntax:
Assign the numeric value to the variable.

This is the basic statement used to put numbers
into registers.

w4 results if (real variable) is a ‘non-
existant” R register, or if the item immediately
following + is anything other than a register
name.

MOTE 25 results if (value) contains a ‘non-
existent’ R register.

Sample Exercise:

L

Press CLEAR.

Literal Syntax:
{(value) -+ (real variable) -+ (real variable) -+ ...
Figurative Syntax:
Assign the numeric value to each variable.
Whenever an assignment statement is executed
from the keyboard, the Ilast numeric value

assigned will be displayed until some other
activity is performed.

Sample Exercise:

Literal Syntax:
{value) -+ {real variable)...) + {(real variable)...)
Figurative Syntax:

value -+ real variable,
real variable, . -+ real variable, . ..

This form is called the multiple assignment state-
ment, and is usually used to save some inter-
mediate results of an involved calculation.

The statement:

is equivalent to the series of statements:

If the statement were stored while the program
line counter was at two, the display would be:

THE MODEL 20 LANGUAGE

5-17

———op—o—p—o—o—o- THE SYNTAX —o—o o oo o oo

When a statement of this form is stored, paren-
theses are added around each of the ‘interior
assignments’.

A parameter in a statement can usually be re-
placed with an assignment statement involving the
parameter. When the overall statement is execu-
ted, the assignment statement is performed at the
time the parameter it represents is needed; the
value that was assigned is taken as the parameter.

Sample Exercise:

Press EXECUTE several times.

A line of the form:

[.... ¥l alued [§....]
is stored as:
[.... %] alue) =& [F....]
The addition of -3 is called the ‘implied store

into Z'.
A statement of the form:
{value) + {real variable) . ..) -+ (real variable) ...)

may or may not have -+. added when the state-
ment is stored. The - will be added if the
statement was originally written with at least the
outer-most level of the enclosing parentheses for
the ‘interior assignments’.

The implied store into Z never affects the
elements of a parameter list.

Sample Exercise:

B

5-18

THE MODEL 20 LANGUAGE

oo oo THE SYNTAX oo —o o o o oo

Literal Syntax:

T [(literal) =] (real variable)
[[= (iteral}] : (real variable) -]

Figurative Syntax:
n; —> real variable; ; n, — real variable, ;....

Where the n, are supplied by the Operator at the
time the ENTER statement is executed.

ENTER statements are a means to suspend the
execution of a program for the purpose of assign-
ing values to a list of real variables. When the
ENTER statement is encountered, the Calculator
will ‘ask” for the value to be assigned to the first
real variable in the list. The value is supplied to
the Calculator by keying in a constant, or an
expression, representing the value. Then RUN
PROGRAM is pressed to cause the assignment to
take place. If there are more variables in the list,
the Calculator will ask for the next value, other-
wise the execution of the program is resumed.

NOTE

ENTER statements cannot be executed
from the keyboard. They can be used only

ENTER STATEMENTS

in the context of a program.

LT e
P11

OTE 11 will result if a line containing an
ENTER statement is executed from the keyboard.

NOTE

If a line contains both an ENTER state-
ment and a GO TO or GO TO SUB
statement (see pages 5-22 through 5-27),
the ENTER statement must precede those
statements. If this precaution is not
observed, the GO TO or GO TO SUB

statement will be ignored.

Sample Exercise:

Press MEMORY ERASE, or, END EXECUTE
STORE EXECUTE. Then store the following
program:

PRESS: C)

E)
PRESS: @

(o)
PRESS: @ @ @

LE B

THE MODEL 20 LANGUAGE

5-19

oo o o o oo THE SYNTAX o —-—eo o o <o o<

When an ENTER statement is encountered, the
display will show (on the left) the name of the
first or next variable in the list, or, the text of the
literal that is immediately to the left of that
variable. Only the left-most 16 characters of a
long literal can be displayed.

While the Calculator is waiting for RUN PRO-
GRAM to be pressed, you may make such calcula-
tions as may be necessary to find the value to be
entered. Also, the value that is to be assigned may
take any form that is permitted as a value on the
left side of an ASSIGNMENT statement.

Please note however, that if an expression is used
to specify the value that a variable in the list is to
assume, the expression itself must be visible in the
display when RUN PROGRAM is pressed. If it has
been executed to learn what its value is, the value
seen on the right of the display will be ignored,
and treated as ‘no entry’ (described shortly). To
cause the Calculator to accept the calculated
value, restore the expression to the display by
pressing BACK. Then press RUN PROGRAM.

Sample Exercise:

Initialize the program memory. Then store and
run the following program:

During the execution of an ENTER statement,
but before it is satisfied, the Calculator is in the
Enter Mode. During this mode, keys that would
alter the program line counter are treated as
syntax errors, or are ignored.

To abort an ENTER statement, and remove the
Calculator from the Enter Mode, use the following
procedure:

1. If necessary, press CLEAR to rid the display
of any 's

2. Press STOP until &
3. Then press CLEAR.

i appears in the display.

ENTER statements cannot be nested: that is, you
may not do anything that requires another
ENTER statement when the Calculator is already
in the Enter Mode.

ENTER statements are not completely syntax
checked. For that reason you must be careful to
write meaningful ENTER statements, as illogical
statements can be stored. However, they will
result in errors during execution, and halt the
program.

Sample Exercise:

Initialize the program memory. Then store and
start the following program.

The Calculator is in the Enter Mode. To abort the
Enter Mode, press CLEAR STOP STOP CLEAR.

5-20 THE MODEL 20 LANGUAGE

> oo o———¢ THE SYNTAX oo oo oo

ENTER STATEMENTS

(continued)

E :
You may not use an ENTER statement NOTE

F . occurs as case ¢ or case d, a
special procedure is needed to abort the

a. As part of a line that is to be executed from
the keyboard.

b. As part of a local subroutine that is to be Enter Mode. See the Operating Manual for
initiated with a 2 from the keyboard. the User Definable Functions ROM.

And if the User Definable Functions ROM s

installed:

c. As part of a subprogram that is to be initiated
with F * EXECUTE.

d. As part of an Immediate Execute subprogram
that is to be used while the Calculator is
already in the Enter Mode.

Each of these situations will result in R A
If it should happen, however, abort the ENTER
statement using the procedure given for that pur-

pose.

The parameter that indicates a real variable, to be Sample Exercise:

assigned a value, can be an expression. This is

permitted as long as the left-most item of the Enter and run the following program:

expression is that variable. The expression can also
contain its own ASSIGNMENT statements.

An ENTER statement can be thought of as a
series of ASSIGNMENT statements. For this
reason, the variables in the list must be of the
type that could immediately follow a .

PRESS:

Lﬁ O i
pness: (1) o
PRESS: @

THE MODEL 20 LANGUAGE

5-21

oo —o—o——o— [HE SYNTAX oo o o >

In this example, A is assigned the value 10 by the
action of the ENTER statement. When the value
of A is specified, #ifi-+& is accomplished prior to
assigning a value to X.

While in the Enter Mode, no value is assigned to a
variable if:

a. RUN PROGRAM is pressed prior to specifying
a value, or,

b. A value is specified, but EXECUTE or CLEAR
is pressed, followed by RUN PROGRAM.

In each case, the variable in question retains its
original value, and Flag 13 is set.

Flag 13 is a useful indicator that the last datum
has been entered. Consider the following program
for summing a series of numbers:

cXR- R

BT T HE R T HUHEER

TTOT AL vl

BNk

Line 2 is a conditional branch based on flag 13.
Flag 13 is normally zero, allowing the new value
of A to be printed and added to the previous
total. After the last number has been entered,
however, RUN PROGRAM is pressed without
making an entry. This sets flag 13, which allows
the IF statement of line 2 to branch to line 3.
Then the result is printed and the program
terminated.

5-22 THE MODEL 20 LANGUAGE

o oo oo THE SYNTAX —o—o oo O o oo

ABSOLUTE GO TO STATEMENTS

Literal Syntax: Sample Exercise:

It (unsigned integer constant) Store and run the following program:

Figurative Syntax:

Where n is a line number. W .
The ABSOLUTE GO TO statement is used to Gt
branch from a line to the beginning of the line
whose line number is n.

will result immediately from an)
attempt to make n a variable, or, if n has a EHD
decimal point.
Result:
£
.;
1
RELATIVE GO TO STATEMENTS
Literal Syntax: Sample Exercise:
 (integer constant) The following program is equivalent to the one
- {integer constant) shown in ABSOLUTE GO TO statements.

Figurative Syntax:

Zi nth higher line number
nth lower line number
The RELATIVE GO TO statement is used to
branch from a line, whose line number is, say, m,
to the beginning of the line whose line number is
m+n, or m—n, depending upon the sign preceding
(integer constant).

THE MODEL 20 LANGUAGE

5-23

oo oo o—o——o— THE SYNTAX o—2—o o o o oo

| £ will result immediately from an
attempt to make (integer constant) have a decimal
point, or, be a variable instead.

LTO dand G 4 each cause a branch back
to the begmmng of the line which contains them.

LABELED GO TO

Literal Syntax:

Figurative Syntax:

"1 the line labeled with the same literal.

The LABELED GO TO statement is used to
branch from a line to the beginning of the line
having a label matching (literal).

The branch occurs in the form of a search begin-
ning at line 0. The first line encountered having a
label matching (literal is taken as the destination
of the branch. Any other lines having the same
label would never be reached by a LABELED GO
TO statement.

Neither (literal) nor the associated label are subject
-to any special restrictions on their length. How-
ever, if either is longer than four characters, only
the right-most four characters are considered in
the search.

Result:

STATEMENTS

Sample Exercise:

Load and run the following program:

Result:

SR

5-24

THE MODEL 20 LANGUAGE

o o oo oo THE SYNTAX o—e—eo o o o o

—— GO TO SUB AND RETURN STATEMENTS ——

Literal Syntax:

: {unsigned integer constant)

----- (integer constant)
i literal?

Figurative Syntax:

at the line numbered n

at the nt" higher line number

at the nt" {ower line number

at the line labeled with the same literal

GO TO SUB statements are used to branch to
local subroutines. The line at which the sub-
routine starts is identified by any of the methods
used with GO TO statements. Thus, there is an
ABSOLUTE GO TO SUB statement, a RELA-
TIVE GO TO SUB statement, and a LABELED
GO TO SUB statement. Insofar as each of these
statements causes a branch from one line to
another, each behaves in the same way as its
corresponding GO TO statement.

However, one additional thing happens when a
: from, say, line number
n. The Calculator automatically assumes that,
when the subroutine is completed, the execution
of the main program is to resume at the beginning
of the line numbered n+1. There is no way to
alter this automatic assumption.

Literal Syntax:
nd[......

end of line
Figurative Syntax:

Return from subroutine to previous program.

RETURN statements are used to terminate sub-
routines and branch back to the previous program.
The destination of the branch will always be the
line following the one which branched to the
subroutine.

must never occur except as the last state-
ment in a line.

Several lines in the subroutine may contain
RETURN statements.

Figure 5-1 is a program that illustrates some
typical uses of local subroutines. In all, there are
23 lines of programming.

Lines O through 13 are the main program. It
branches to local subroutines labeled “ORIG”,
“PRT"”, “SORT", and “NEW". Although the pro-
gram uses mostly symbolic addressing, any of the
other types could also have been used.

The main program does the following things:
Enters 3 numbers into R1-3.

Prints those numbers in their original order.
Re-arranges the numbers into numerical order.
Prints the new order.

Enters 3 numbers into R4—6.

Prints those numbers in their original order.

@ =+~ @® 0o 0 T D

Re-arranges those numbers into numerical
order.

h. Prints the new order.
i. Starts over.

The subroutines do the following things:
a. "“ORIG"” prints a heading.

b. “PRT"” prints R1-3, or R4—6, depending
upon the value of X, which is controlled by
the main program.

¢. "SORT” re-arranges the contents of R1-3, or
R4—6, depending upon the value of X.
“SORT" uses A, B, and C as temporary
storage.

“SORT"” wuses an unusual series of mixed
expressions to re-arrange the numbers, as we
have not yet covered the |F statement. Con-
sider line 16. Suppose A is the smallest num-
ber. Then line 16 is equivalent to:

“SORT" has one failing, in addition to being
cumbersome; what happens if some or all of
the input data are equal?

d. “NEW" prints a heading.

5-25

THE MODEL 20 LANGUAGE

o —o— oo THE SYNTAX o —o—o oo oo

Subroutine “SORT" Results

Main program

Subroutine “NEW"’

Subroutine “PRT"’

O
o
o
feb}
C
=
3
o
b
No]
3
2]

Last line of programming

Figure 5-1. A Program lllustrating the use of Local Subroutines.

5-26

THE MODEL 20 LANGUAGE

- oo o909 THE SYNTAX o—2—eo o o o oo

—— GO TO SUB AND RETURN STATEMENTS ——

(continued)

In the basic Calculator, local subroutines can be
nested to a depth not to exceed 31 levels. In each
specific problem solving situation, the actual
depth available is determined by internal condi-
tions at the time the nest is enerated as such,

is not easily predicted. =+ will occur as
an error during executlon |f there is an attempt to
nest too deeply.

If the User Definable Functions ROM is installed,
local subroutines may be nested approximately
twice as deep as would otherwise be possible.

will occur if a RETURN statement is
encountered and the machine is not executing a
local subroutine or a subprogram.

Subroutines are said to be nested when a sub-
routine branches to (and is returned to from) yet
another subroutine before returning to the main
program.

The following program and printed result
illustrates the notion of nesting:

By

r": F. e
GRAM" -
i

P

Result:

A MHIM PR

THE MODEL 20 LANGUAGE

o o o o oo THE SYNTAX

A local subroutine can be executed as a program
in its own right. When a GO TO SUB statement is
written and followed by EXECUTE (dont use
RUN PROGRAM!) the designated subroutine is
treated as if it were a separate program to be run
by itself. Any RETURN's, Jlocated within the
subroutine itself, assume the meaning ‘go to line O
and then stop’. Should that subroutine branch to
other subroutines, their RETURN's are treated as
ordinary RETURN's.

5-27

Sample Exercise:

If you were to load the program of the previous
example, you could execute its subroutines from
the keyboard:

BOEOE0E D
\\JLJ

BOOOEEO6E]

—— LOCATION OF GTO AND GSB IN A LINE ——

A GO TO or GO TO SUB statement can usually
be located anywhere among other statements of a
line. However, a z7i! or = is not actually
executed until the end of the line has been
reached.

If a line contains a combination of 7 {I's and
:mE's, the last one encountered is the one which
will be executed when the line is completed.

STOP is also an instruction which is not executed
until the end of the line, even though it may be
located in the interior of the line. If a line
contains both a STOP and either a GO TO or GO
TO SUB statement, the program line counter will
be set to the new line number, but that line will
not be executed.

A GO TO or GO TO SUB statement must follow
an ENTER statement if both statements are on
the same line. Otherwise, the GO TO or GO TO
SUB statement will be ignored.

The following pairs of lines are equivalent:

5-28

THE MODEL 20 LANGUAGE

HIGH SPEED BRANCHING

GO TO and GO TO SUB statements are executed
in either of two modes: high speed or slow speed.
During a slow speed branch the Calculator finds
the destination of the branch by counting the
number of lines, either from line 0, or from the
current line, for absolute and relative addressing,
respectively. Symbolic addressing requires a search
beginning at line 0.

Once the destination of an individual branching
statement is located, the ‘internal address’ of the
destination is actually added into the line (as part
of the GO TO or GO TO SUB statement) causing
that particular branch. (This is an internal matter,
and cannot be observed by recalling lines or listing
the program.) The next time that GO TO or GO
TO SUB statement is executed, no counting or
searching will be required. The machine will
‘know’, in advance, where the destination is, and
simply ‘go there’ — provided one other condition
is met.

That condition is that an END statement has been
executed prior to starting to run the program, and
that no subsequent editing instructions (BACK
FORWARD DELETE INSERT) have been used.

The END statement forces the first use of each
individual branching statement to occur in the
slow speed mode. This is because of possible
uncertainty about the validity of the internal
address of each destination; by first branching in
the slow speed mode, known correct internal
addresses are found. These addresses are then used
in subsequent branching by each statement.

If, after storing or editing a program, it is started
without first executing an END statement, the
entire program will be run in the slow speed
mode.

Sample Exercise:

Enter the following program:

These lines are
simply to take
up space.

£'s are easily obtained by simply pressing:
The implied store into Z does the rest.
After the program has been loaded, press:

RUN PROGRAM

This starts the program and enables the high speed
mode to take effect.

THE MODEL 20 LANGUAGE

oo THE SYNTAX

Literal Syntax:

> [.... &] .0MF (alue
end of line
Figurative Syntax:

*n lines

The JUMP statement is used to branch from a
fline, whose line number is, say, m, to the begin-
ning of the line whose line number is m+n, or
m—n, depending upon whether (value} is positive
or negative, respectively.

The JUMP statement is similar to the RELATIVE
GO TO statement, except that:

a. Since .IMF can be followed by a value, the
destination of the branch can be computed at
the time the branch is made, and,

b. JUMP statements are slower than RELATIVE
GO TO's because {(value} must be evaluated
each time the statement is executed. There is
no high speed branching possible with JUMP
statements.

An attempt to execute a JUMP statement from
the keyboard will either be ignored, or result in
HOTE &, depending upon the circumstances.

~

JUMP STATEMENTS

5-29

You should see a relatively constant display of:

)

Now press:

L_O,?
Q]

This time the display will appear as:

(blinking)

The blinking is caused by the extra time needed
to search for destinations while in the slow speed
mode.

Sample Exercise:

Load and run the following program:

P14l

EHD -

Result:

Notice that the value following the .i#F in line O
does not need to be enclosed in parenthesis.

{continued)

5-30

THE MODEL 20 LANGUAGE

it p———— THE SYNTAX oo oo o oo

JUMP STATEMENTS

(continued)

If (value) does not represent strictly an integer,
the digits to the right of the decimal point are
ignored.

JiiF (zero) causes the line containing it to be
repeated.

Modify the program so that line O is:

Run the program again. The results should be the
same, as "JUMP 2.9" is equivalent to "JUMP 2’.

Modify the program so that line O is:

Run the program again. The result should be:

\

in contrast with the GO TO and GO TO SUB
statements, when a JUMP statement is
encountered it is executed immediately. For this
reason, there is never any point in having other
statements to the right of a JUMP statement; they
will never be encountered.

Sample Exercise:

Store and run the following program:

KX

2

oe b ae v

Result:

[
(

Note that #x is never displayed.

THE MODEL 20 LANGUAGE

5-31

Relational and mixed expressions are often com-
bined with JUMP statements to form incrementing
and decrementing loops.

Sample Exercise:
Enter and run the following program:

FXD 23B4Ak
1

FET RiJNF [F+1+A
1=11F

SFC BFEND |

Result:

RESTRICTIONS ON BRANCHING

With one exceptlon any branching statement will
result in Hi g1, as an error during execu-
tion, if the destlnatlon of the branch is not an
existing line stored in the Calculator. The excep-
tion is this: The program line counter may be set
to the line number which is one higher than the
highest line number currently stored.

If the exceptional case should occur during the
execution of a program, the Calculator will branch
to that ‘line’ and treat it as if it were:

{m: ¢

Any attempt to branch (GO TO, GO TO SUB,
JUMP, and [|IF statements) will result in
i g1 if it is attempted while the Calculator
isin the Enter Mode.

The Calculator has to allow the program line
counter to be set to one higher than the number
of the highest currently stored line. Otherwise,
you could never store the ‘next line’ of a
program.

It is not possible to set it higher than that because
to do so would require it to anticipate the place
in memory where that line would eventually start.
(The program line counter ‘addresses’ the start of
a line, but there would be at least one missing line
ahead of the designated line.)

5-32

THE MODEL 20 LANGUAGE

Literal Syntax:

& {value)

Figurative Syntax:

Where 0 << n < 15 denotes the desired flag.

A SET FLAG statement is used to set a flag
{make its numeric value be 1).

If (value) is not strictly an integer, the digits to
the right of the decimal point are ignored.

B £ @5 will result, as an error during execu-
tlon |f the integer part of (value) is less than O, or
greater than 15.

FLAG STATEMENTS

There are 16 flags, named flag O through flag 15.
See “FLAGS”, page 5-2, for a discussion of the
role of flags.

Sample Exercise:

Press EXECUTE several more times.
happening?

What's

If, while the Caluclator is running a program,
SET/CLEAR FLAG N is pressed, the machine will
detect this and automatically assume that flag O is
to be set. Flag O will be set without interrupting
the program.

Sample Exercise:

Load and run the following program:

B FE ISR
Iv:“‘"" " o mnon

i
CFG 83 DSp |
HES LU EHE -

Literal Syntax:

% (value?

Figurative Syntax:
Where 0 < n < 15 denotes the desired flag.

A CLEAR FLAG statement is used to clear a flag
(make its numeric value be 0).

The mnemonic i is produced by pressing the
SET/CLEAR FLAG N key twice in succession.
Once the mnemonic LF{: is present in the dis-
play, it cannot be separated into its original
components of ' " through the use of
BACK or DELETE is treated as is any
other mnemonic.

THE MODEL 20 LANGUAGE

5-33

oo oo o o—@ [HE SYNTAX o—we—-e2 <o o o o o

If (value) is not strictly an integer, the digits to
the right of the decimal point are ignored.

b = 25 will result, as an error during execu-
tlon if the integer part of <value) is less than 0, or
greater than 15.

All flags are automatically cleared when an END
statement (see page 5-36) is executed while the
program line counter is within the mainline pro-
gramming area (as opposed to an area defined by
the User Definable Functions ROM).

Literal Syntax:

% (value)

Figurative Syntax:

2 n
Where 0 < n < 15 denotes the desired flag.

This syntax is used to identify a particular flag in
situations other than setting or clearing that flag.

If <value) is not strictly an integer, the digits to
the right of the decimal point are ignored.

HOTE &% will result, as an error during execu-
tlon if the integer part of (value) is less than O, or
greater than 15.

Sample Exercise:

Press EXECUTE until the display is:

Press EXECUTE several times.

(D

Continue pressing EXECUTE. What happens?
Why?

(%)

In addition to flag O, other flags that have special
properties are flags 13, 14, and 15.

There is an example of the use of flag 13 on page

5-21.

{continued)

5-34

THE MODEL 20 LANGUAGE

oo oo o o o THE SYNTAX -2 o <o <o oo <

FLAG STATEMENTS

{continued)

Literal Syntax:

mol.... 58] IF {value) § (statement)
[§ {statement)] ...

(n+1:> {ine)
Figurative Syntax:

n:.... IFcondition & then...
n+1: otherwise . ..

IF statements are a powerful means of branching.
If the condition following IF is true, then the
remainder of the line is executed. Should the
condition be false, however, the execution of the
line is terminated at that point, and the next line
is executed.

Most often (value) is a relational or mixed expres-
sion. The numeric value of the expression is used
to determine if the condition is true or false. If
the absolute value (in the arithmetic sense} of
{(value) is 1, or greater, the ‘condition’ is assumed
to be ‘true’; otherwise it is taken to be ‘false’.

IF STATEMENTS

If flag 14 is set, certain arithmetic faux pas are no
longer treated as errors during execution. They
will set flag 15, however, regardiess of the value
of flag 14.

The line segment to the right of {(value} usually
contains a branching statement. Used in that way,
an |F statement has the figurative meaning: if
some condition is met, branch to somewhere,
otherwise, don’t branch there, but go to the next
line instead.

The following are typical |F statements:

(continued)

THE MODEL 20 LANGUAGE

5-35

oo o o> oo [HE SYNTAX o2 oo o<

Literal Syntax:

Figurative Syntax:
Stop at end of current line.

STOP statements are used to interrupt or termin-
ate the execution of a program.

If a STOP statement is located within the main-
line programming area, but not within a local
subroutine, the execution of the program can
safely be resumed by pressing RUN PROGRAM —
provided nothing has been done to alter pertinent
conditions existing at the time the program
halted.

However, if the STOP statement was located
within a local subroutine, or within a subprogram
written using the User Definable Functions ROM,
consider the program as being terminated. The
reason for this is that any editing or execution of
a line, after the STOP, destroys the return branch-
ing information associated with the nesting of
subroutines and subprograms.

STOP STATEMENTS

Sample Exercise:

Enter and run the following program:

Enter various numbers for A and B, and see what
happens. |In particular, try letting A be
999999999988 and B be 1. What happens? Why?
(Hint: see the bottom of page 5-4.)

Pressing STOP while a program is running will halt
the execution of the program. The effect is the
same as if the Calculator had encountered a STOP
statement in the line it was executing.

Sample Exercise:

Load the following program.

{continued)

5-36

oo THE SYNTAX

STOP STATEMENTS

THE MODEL 20 LANGUAGE

(continued)

Even though a STOP statement may be located in
the interior of a line, it is not executed until after
the completion of all other activity generated by
that line.

When Calculator stops, the display will generally
contain some information related to whatever
happened before the STOP took effect.

Literal Syntax:

. \end of line

Figurative Syntax:
Clear all flags, go to line 0, and stop.
END statements are used in establishing certain

initial conditions prior to running a program, and
also as a means to terminate a program.

END STATEMENTS

o [=) ()

Result:

Press:

Result:

o, s () ()

Result:

s (1) () (1) (=) () (o)
Press:

Resuit:

(HaTE

END statements are an important part of the
mechanics of Model 20 operation. Chapter 3
contains explanations and examples of that aspect
of using END statements.

Because storing or modifying a line containing an
END statement deletes the lines of programming
having higher line numbers, END statements are
seldom used in the interior or a program. They
are usually used only in the highest numbered line
to be stored.

THE MODEL 20 LANGUAGE

5-37

oo o oo THE SYNTAX —o——o—o—o oo

A number of things happen when an END state-
ment is executed or stored. They are:

a. Executing an END statement sets the program
line counter to zero.

b. If an END statement is encountered during
the execution of a program, the program is
halted, and any nesting information is lost.

c. All flags are cleared when an END statement
is executed.

d. When a line containing an END statement is
stored, or, such a stored line is modified
through the use of the editing ability, the
existing subsequent lines in that programming
area are deleted.

Literal Syntax:

[[....: i](ABSOLUTE GO TO or END
statement) &

end of Iinef

Figurative Syntax:
Record programming only.

This syntax is used to record programs on mag-
netic cards, and should be used only from the
keyboard.

The record produced consists of a series of (com-
piled} lines; the line numbers of those lines are
not part of the record. This permits a program,
that is currently located in one part of the
memory, to be recorded and later loaded back
into a different part of the memory. The line
numbers assigned to that programming will
depend upon where the program line counter is
set when the record is loaded.

When recording programs, a record starts with the
line whose number is specified by the GO TO or
END statement preceding i i:. All subsequent
lines, down to and including the highest numbered
line currently stored in the mainline programming
area, are made part of the record. It is possible to
control where the record starts — but not where it
stops. END and STOP statements within the pro-
gramming being recorded exert no special effects
upon the recording process.

RECORD STATEMENTS

It is recommended that an END statement be
executed before starting a program, because this
accomplishes needed initialization, such as guaran-
teeing that no flags are set except for the ones
deliberately set by the user. It also ensures that
the program will be run with high speed
branching.

Whenever a statement involving the mnemonics
is executed, the card reader motor
will start. It is a good practice to allow the motor
to start before inserting any cards into the {upper)
slot of the card reader. The card can be removed
from the lower slot of the card reader once the
card stops moving.

See pages 2-2 and 2-3 for additional information
about using the magnetic card reader.

Line @ e
Program 1

Line 15
Line 16

Program 2

Line 25
Line 26

Program 3

Line 33 vy
Max R register

RO

Figure 5-2. Recording Programs.

5-38

THE MODEL 20 LANGUAGE

oo —o—9——o—o- THE SYNTAX —o—o oo oo oo

RECORD STATEMENTS

{continued)

! £ 1 will result from an attempt to record
|nformat|on on a side of a card which has been
protected, by snapping out the protect tab for
that side.

I occurs whenever another side is
needed to continue making the record. Press
EXECUTE and then insert another side.

Identify the sides, so that they can later be loaded
back into the Calculator in the sequence in which
they were recorded.

Any RECORD operation can be terminated by
pressing STOP.

A record of programming information includes the
type, and configuration of, any plug-in ROM’s
that are installed in the Calculator when the
record is made.

Suppose the mainline programming area has three
programs stacked in it, represented by Figure 5-2.

Program 3 can be recorded as an individual pro-
gram, simply by executing:

g b

However, to record program 2 as an individual
program, you must first delete program 3. Do this
by storing an END as the first line of program 3.

:

(At this point you may wish to delete the END
statement just stored, as it will be considered part
of program 2.)

in the same way, program 1 cannot be recorded
as an individual program until programs 2 and 3
have been deleted.

“SECURE" RECORD STATEMENTS

Literal Syntax:

[[....¢ i]CABSOLUTE GO TO or END
statement) &]

, . end of Iinef
Figurative Syntax:

Record private programming.

This syntax is a means of recording private pro-
gramming onto magnetic cards. If such a record is
loaded back into the machine, using the LOAD
statement (see pages 5-41 and 5-43), any attempt
to list the program, record the program on mag-
netic cards, or, view or edit any lines of the
program, will result in destruction of all program-
ming stored in the User’s RWM. Numerica! data
stored in memory is not affected.

Insofar as recording cards is concerned,
; has all the properties of

The only difference IS that the record is

identlfled as containing “‘secure’’ programming.

Sample Exercise:

Key in the following program:

THE MODEL 20 LANGUAGE 5-39

- o o o o oo [HE SYNTAX oo o o > o

If a secure program is stacked in the memory
along with other programs that are not secure, all
the programming in the Calculator is treated as
secure programming.

S

Secure programs can be run in the Trace Mode.

There is no way to key in a program and have it
treated as a secure program. To become secure, a
program must first be placed in the memory by
conventional means, and then recorded with
Bl "F.Then the record will contain the
secure program; however, the programming still in
the Calculator will not be secure, and can still be
tisted and recorded, etc.

Record the program on a card by pressing:

GloMolslslales
\J&g

Now insert the card.

To load this secure program, press:

Insert the recorded side of the card. (The original
programming wasn’t secure — only the program-
ming on the card is secure.)

To run the program, press:

RUN PROGRAM

The ‘control code’” mentioned in this program is
1234. If any but the correct digits are entered by
the user, the program will (what else?) self-
destruct. That is done by branching to a i
the program (line 8).

5-40

THE MODEL 20 LANGUAGE

oo o—o—o—9 THE SYNTAX o—o—eo oo oo

RECORD “DATA” STATEMENTS

Literal Syntax:

Figurative Syntax:
Record RO through Rn, inclusive.

This syntax is used to record the contents of R
registers onto magnetic cards. The record will
consist of RO, up through, and including, the R
register specified by (value).

If <value} is not strictly an integer, the digits to
the right of the decimal point are ignored.

f ¥ (value) is missing, the entire statement will be
ignored.

HOTE &2 will result if the integer portion of
(value} is less than zero, or greater than the
number of available R registers.

} " i R - 1 i have the same mean-
mgs for the RECORD DATA statement as they
have for the other RECORD statements.

Unlike records of programming, where the line
numbers are not part of the record, the names of
individual registers involved are part of a record of
data. Thus, if RO through R10 are recorded, they
cannot be loaded back in as R20 through R30.
Data will automatically be loaded back into the
same registers from which it was recorded.

Sample Exercise:

First, use the following program to put data into
RO through R100.

To record the data, execute the line:

Insert the first side. After it has been recorded,
you will see:

Press EXECUTE and insert the next side. Con-
tinue doing this until the display returns as:

(- J

Now press MEMORY ERASE, and load the
following program:

Now press LOAD EXECUTE. Insert the first side
of the previously recorded data. When
= 14 appears, press EXECUTE again, and
msert the next side. After all sides have been
inserted the display will show only the end-of-line
symbol. Then press END RUN PROGRAM.

THE MODEL 20 LANGUAGE 5-41

oo oo [HE SYNTAX 2o oo o oo

iir1” does not affect the setting of the Max R register
program I|ne counter, nor does that setting affect
the operation of recording data.
lifi" is programmable, and can be located R26
anywhere within a line. on \
A record of data contains no information about
the configuration of plug-in ROM'’s installed in the
Calculator.
R11
There is no way to make a record of data be R10
secure.
R@

Figure 5-3. Recording Data.

KEYBOARD LOAD STATEMENTS

Literal Syntax:

Line ¢
....3 : [{(ABSOLUTE GO TO or END New program
statement) &] ; 10 line program
. f Line 9
Figurative Syntax: end of line Max R register
Load one record of information from
magnetic cards.
This syntax is used, from the keyboard only, to RO
load whatever information has been recorded. The) . .
Calculator will recognize the type of information Figure 5-4. Loading a Single Program.
on the card because on each side there is a
recorded heading that specifies that (and other)
information. Be sure to insert the cards into the
card reader in the sequence in which they were Line @

recorded. -
Existing program

& 1% will occur if there is more informa- Line 9
tion in the record than can be stored in the Line 16
memory.

New program
Line 14

Max R register

5 line program

has the same meaning for LOAD
statements as it does for RECORD statements —
press EXECUTE and insert the next side.

RO

A LOAD operation can be terminated by pressing
STOP. Figure 5-5. Stacking Programs.

{continued)

5-42 THE MODEL 20 LANGUAGE

o> THE SYNTAX

KEYBOARD LOAD STATEMENTS

{continued)

1% will occur, after a record of program- BEFORE

m|ng has been loaded, if any plug-in ROM’s are Line @
not in the same slots they were in when the
program was recorded. However, other ROM’s

installed in slots that were empty when the pro- pr?g'fam
gram was recorded will not cause i i i

When Ioadlng a record of programming, precede Line 3¢

the i.iiii with an END or ABSOLUTE GO TO Max R register
statement. The sequence of line numbers assigned

to the lines of programming will begin with the

line number specified by the END or ABSOLUTE RO

GO TO statement, say, n. The second line of

programming will become line number n+1, etc. AFTER

No addressing statement needs to precede i.ilil Line @ ‘
when the record to be loaded consists of data. pr’g'gxm
The data will automatically be placed back into Line 15 '

the same registers from which it was recorded. Max R register

NOTE
If a program was recorded with the User
Definable Functions ROM installed, be
sure that the ROM is again installed before
the program is loaded back into the Calcu- RO

lator, even though the program in question

RETURN statements in the program will
be incorrectly loaded into the memory.

The mnemonic ERI will be replaced by Line @
an arbitrary character.

See the Operating Manual for the User
Definable Functions ROM for further
information.

Max R register

These registers are
not disturbed

R21

R20

R@

16 line program

may not actually use capabilities of the Figure 5-6. Loading a New Program
UDF ROM! Otherwise, the END and over an Old Program,

Record is of R®
through R24

Figure 5-7. Loadmg Data

THE MODEL 20 LANGUAGE

5-43

oo oo THE SYNTAX —o—o—eo o0 oo

STORED LOAD STATEMENTS

Literal Syntax:

Al .. .3 il{any GO TO statement) i

end of Iinef

Figurative Syntax:

i n RUN PROGRAM

This syntax is used, /in the context of a program
only, to load data or mainline programming, and
then automatically continue the execution of the
program.

The GO TO statement can be any type of GO TO
statement: absolute, relative, or symbolic.

When ii is reached, program execution is
halted, and the card reader motor starts. As cards
are inserted, 's 12, 14, and 15 have their
usual meanings, although £ 1 can have
some additional meanings.

f - 12 will occur if the GO TO statement is
missing, or, if the GO TO statement specifies a
negative line number, or a line number greater
than one higher than is currently stored.

If programming is to be loaded, the lines are
loaded starting at the line number specified by the
GO TO statement, and program execution wi//
automatically resume at that same line number,
once the record has been loaded.

NOTE

The GO TO statement preceding i
needed even though the record to be
loaded consists of numerical data.

Even though the record to be loaded consists of
data, the GO TO statement will perform its
designated function. Be sure you choose a para-
meter for the i: which causes the execution of
the program to resume in the appropriate place.

BEFORE
Line 0

Program 1
Line 15
Line 16

Program 2

Max R register

RO

AFTER
Line 0

Program 1
Line 15
Line 16

Program 3
Line 29

Max R register

R@

Path of program
execution

; Load program 3

rStart program 3
Path of program
execution

Figure 5-8. Automatic Linking of Programs.

5-44

THE MODEL 20 LANGUAGE

o oo THE SYNTAX o—o—eo——o——<o o>

STORED LOAD STATEMENTS

(continued)

Literal Syntax:
ADX....:]¢@ny GO TO SUB statement) s L. {111 &
end of line

Figurative Syntax:

i RUN PROGRAM

Except for one difference, this syntax behaves in
a manner identical to the previous one. The
difference is this: After a program has been
loaded, beginning at the line number specified by
the GO TO SUB statement, the execution of the
program automatically resumes at line O, rather
than at the point where the new lines were
loaded.

NORMAL AND TRACE STATEMENTS

Literal Syntax:

™ end of line
Figurative Syntax:

Establish the Trace Mode.

Literal Syntax:

. \end of line

Figurative Syntax:
Cancel Trace Mode Operation.

These syntaxes are used to establish and cancel
the Trace Mode. While in the Trace Mode, the
Calculator makes a printed record of the results of
its activities.

When the Calculator is not in the Trace Mode, it
is said to be in the Normal Mode.

Pressing TRACE while the Calculator is running a
program will establish the Trace Mode (provided
the program does not execute its own NORMAL
statement) without halting the program.
NORMAL has a similar ability.

See “TRACE MODE OPERATION", page 3-14,
for a complete description of the Trace Mode.

THE MODEL 20 LANGUAGE

5-45

o oo oo THE SYNTAX oo —o oo oo

Literal Syntax:
F{(quantity) or & [{expression) :

Figurative Syntax:

Al
3

Where 0 <n <n_ ...

This form is used to designate R registers. If
(quantity) or {(expression) is not strictly an integer,
the digits to the right of the decimal point are
ignored.

Of course, n_,, is the number of available R
registers, and n itself must be less than n_
because R register numbering starts at O, rather
than at 1.

HOTE &5 will occur if n is less than zero, or
greater than or equal to n_ ., n is the integer

part of {quantity) or {expression).

MISCELLANEOUS

R~ will cause a syntax error (i £11). Use

F {— instead.
The most general form for & is:
7 i <{value)

Since F i{value)i is itself a value, it follows that
the following forms are also valid:

i e = =
BE P H+ARE H
" LA I B L S

Remember that & is obtained by pressing the R
() key, not the half-key called R.

See "DESIGNATING A REGISTER”, page 4-2,
for a detailed explanation of R register designa-
tion.

The syntax:

GOTO ..)AUF..){GOTO..)
(F ..)(GOTO)...

is often useful when it is necessary to branch to
one of several places from one line, but it is
difficult or impossible to use the computing abil-
ity of the JUMP statement for that purpose. It’s
called the 'n-way branch’.

Briefly, it works like this: A GO TO statement is
not executed until the end of the line, or until
the line is terminated, whichever comes first. Then
if more than one GO TO statement has been
encountered by that time, it is only the latest one
that gets executed. A ‘met’ |IF statement allows
the execution of the line to continue from left to
right, but a ‘failed” IF statement will terminate
the line at that point. Then the previous GO TO
statement will be executed. The syntax can be
thought of as a series of ‘GO TO IF NOT’s".

This line branches to: line 10 if A is less than or
equal to 10; to line 12 if A is greater than 10 but
less than or equal to 20; to line 14 if A is greater
than 20 but less than or equal to 30; and to line
16 if A is greater than 30.

5-46 THE MODEL 20 LANGUAGE

. — el p-—p——p—2— THE SYNTAX —o— o o> oo

MISCELLANEOUS

(continued)

The syntax: Consider the following program:

oy [0 F]

end of line

can be thought of as a ‘JUMP TO SUB’ or
‘COMPUTED GO TO SUB’ statement.

Here is what happens: The GO TO SUB statement
will not be executed until the end of line. But the
end of the line contains a JUMP statement which
overrides the % i. The destination of the branch
will be determmed by the JUMP statement, but
the GO TO SUB statement will still cause an
automatic return branch to be established for a
corresponding RETURN statement.

The parameter for the GO TO SUB statement
does not determine any of the branching (its a
dummy parameter), yet it still must be an other-
wise valid parameter, or i :

an error during execution.

When run, it produces the following results:

THE MODEL 20 LANGUAGE

5-47

o oo —o—o—o THE SYNTAX —o—eo—eo o o oo <o

Sometimes you might wish to store a blank line,
like:

To do that it is only necessary to press STORE
while the display is either blank, or has just been
cleared with CLEAR.

Sample Exercise:

Press END EXECUTE CLEAR STORE.

There is a special use of CLEAR which is useful
when replacing one line of programming with
another line.

CLEAR will maintain the program line counter at
n, if it is pressed while a replica of the line
numbered n is in the display.

Then the new line can be written, and stored. |t
will replace the old line numbered n. If CLEAR
were not pressed, and the new line written and
stored anyway (the replica will vanish as the first
key of the new line is pressed), the line would be
stored as the line numbered n+1.

Let's say that you wished to replace line 5 with

an altogether different line. Here are three ways

to do this according to the procedures of Chapter

3:

a. Press GO TO 5 EXECUTE, write the line and
press STORE.

b. Press GO TO 5 RECALL, then use BACK to
get to the front of the line, write the new line
and then press STORE.

c. PRESS GO TO 5 RECALL DELETE, then set
program line counter back to line b, write the
new line, and press INSERT STORE.

Using CLEAR, vyou would presss GO TO b
RECALL CLEAR, then write the new line, and
then press STORE.

- oo oo REVIEW oo <o <o <o <o o<

The following concepts were presented in this
chapter.

1. A constant is a number that is expressed in an
explicit manner, as part of a line.

A real constant is an ordinary number.

A ’constant’ in the problem solving sense is
not necessarily the same thing as a constant in
the syntactical sense.

2. A variable is a unit of memory. We don‘t
generally distinguish between the name of that
unit of memory, and the thing that’s stored in
it.

A real variable is a register.

3. A quantity is any variable or constant.

4. A literal is a series of characters in quotation
marks. Literals make possible labels and
symbolic addressing.

5. A flag is a variable that is used to represent a
condition. A flag can be either ‘set’ or ‘clear’,
which correspond to the numeric values 1 and
0, respectively. There are 16 flags, named flag
0 through flag 15.

Certain flags have special properties:

a. Flag O can be set while a program is
running by pressing the SET/CLEAR
FLAG N key.

b. Flag 13 denotes that no entry was made
during an ENTER statement.

5-48

THE MODEL 20 LANGUAGE

6.

10.

11.

12.

c. Flag 14 permits certain arithmetic faux
pas.

d. Flag 15 is automatically set by such a faux
pas.

An operator is a symbol that indicates some
computational activity, or a relationship, be-
tween two values. The arithmetic and rela-
tional operators are subject to a hierarchy.

Supplied functions are those functions whose
properties are determined by the design of the
machine. Using the User Definable Functions
ROM, vyou can write special functions of
interest to you. They are called definable
functions. In general, both types are used in
the same way.

A mathematical expression contains no opera-
tors other than arithmetic operators, and is
used for general computational purposes.

Relational expressions involve relational opera-
tors, and are most often used in forming tests
for certain conditions.

Every mathematical or relational expression
has a numeric value. The numeric value of a
mathematical expression is obtained simply by
performing the computations it describes. The
numeric value of a relational expression is 1 if
the expression is ‘true’, and 0 if it is ‘false’.

Complex relational expressions are evaluated
by replacing the component relational expres-
sions with their individual numeric values.
Mixed expressions are evaluated in the same
way.

A value is any quantity or expression.

An instruction is a command, other than an
operator or function, to do something.
'PRINT’ is an instruction.

A statement is a complete syntactical unit,
and specifies an activity that can be per-
formed.

A line is a sequence of statements, separated
by semi-colons. The statements in a line are
generally executed from left to right, but

13.

14.

15.

16.

17.

18.

19.

20.

certain types of statements are not executed
until the line is otherwise finished. These are
STOP, GO TO, and GO TO SUB statements.

A label is a means of identifying a line; it is a
literal in the left-most position of a line.

Parameter lists are used by several instructions
to specify the exact activity that is to be
performed.

For example:

A program is a sequence of stored lines. Each
line in a program has a line number, which
was automatically assigned by the Calculator
at the time the line was stored. Line numbers
are the consecutive unsigned integers O, 1, 2,
3, ... Line numbers always start at 0. The
natural order of execution for lines is by line
numbers, in increasing numerical order.

Branching and addressing are terms that des-
cribe a program’s ability to alter the natural
order in which the lines of a program are
executed.

Relative addressing is a means of branching
from one line to another line, by indicating
that the destination is so many lines ahead or
behind the current line. The actual line
numbers are not involved.

Symbolic addressing is a means of branching
to a line identified as possessing a certain
label. Neither the line numbers of the tines,
nor their relative positions in the program,
have any effect on the branch.

A record is a series of one or more sides of
magnetic cards upon which are preserved some
programming or some data. Programs and data
cannot be preserved together on the same
record.

A subroutine is a program segment which
performs some useful task for another pro-
gram. The type of subroutines that can be
written with the basic Calculator are called
local subroutines.

THE MODEL 20 LANGUAGE

5-49

o ——o————o—— REVIEW o—eo—ao—o o o> 00—

21.

22.

23.

24.

25.

26.

A literal syntax describes the technical details
of the form that a given type of statement
must have. In other words, it specifies what is
permissible in terms of the various language
elements. However, it doesn’t necessarily say
what the statement will do when it is
executed.

A figurative syntax is a representation of what
the statement will do, or of what certain parts
of the statement mean.

FIXED and FLOAT statements are used to
specify what form printed and displayed
results will assume.

Numbers too large to appear in the current
fixed point specification appear under the
previous floating point specification.

FIXED and FLOAT statements do not affect
the appearance of literals.

The DISPLAY statement
numerical information or
display.

is used to place
messages in the

PRINT and SPACE statements are used to
print information with the printer. To print
alpha information, put a literal in the list
following the & 7. SPACE statements use the
SPACE N key, rather than the half-key called
SPACE.

Assignment statements are used to put num-
bers into registers.

Multiple assignment statements are used to put
the same number into several registers, and to
save intermediate results of calculations.

Because of the implied store into Z, a line like

& is stored as =

The implied store into Z never affects the
elements of a parameter list.

ENTER statements are the primary means
used to enter data into the Calculator while a
program is in progress.

27.

28.

29.

30.

31.

32.

33.

34.

Press RUN PROGRAM to cause the Calculator
to accept an entry.

An entry must appear ‘on the left’ in the
display; an executed entry will not be entered,
even if RUN PROGRAM is pressed next.

ENTER statements cannot be nested,
executed from the keyboard.

nor

The ABSOLUTE GO TO statement is used to
branch from one line to the beginning of
another line explicitly identified by its line
number. There is no ‘computed GO TO’, nor
is there any way to branch into the middle of
a line.

The RELATIVE GO TO statement is a means
of relative addressing. The parameter must be
an integer constant.

The LABELED GO TO statement is a means
of symbolic addressing.

GO TO SUB statements branch to local sub-
routines, and can have any form permitted for
a GO TO statement. Local subroutines can be
nested no deeper than 31 levels, although the
limit may be lower than that, depending upon
the circumstances.

A RETURN statement causes a branch back
to the line following the one which branched
to the subroutine.

JUMP statements are a means of relative
branching by either an explicit or computed
amount.

GO TO and GO TO SUB statements can use
the high speed mode of branching; JUMP
statements cannot. An END statement must
be executed prior to starting the program, or
all branching will be done in the slow speed
mode.

No branching statements can be executed
while the Calculator is in the Enter Mode.

=+ is used to set a flag.

: is used to clear a flag. ©F iz is generated

5-50

THE MODEL 20 LANGUAGE

—~>—o—o o o oo REVIEW oo > o <o <o

36.

37.

38.

by pressing the SET/CLEAR FLAG N key
twice in succession.

1.1z is used to designate a flag for purposes
other than setting or clearing it.

Executing an END statement clears all the
flags.

IF statements are used to branch according to
some condition.

An |F statement is ‘met’ if the numeric value
of the <(value) following it has an absolute
value of 1 or greater, otherwise it is ‘failed’. If
the IF is met, the execution of the line is
continued; should the i¥ be failed, the line is
terminated at that point.

STOP statements are used to interrupt or
terminate the execution of a program. If the
STQOP occurs within any nesting, consider the
program terminated. Otherwise it may be re-
started, provided no other vital conditions
(such as the setting of the program line
counter or the values of pertinent variables)
have been altered.

END statements are used to terminate the
execution of a program, and also in estab-
lishing certain initial conditions prior to

running a program.

Executing an END statement sets the program
line counter to O, and clears all flags.

Storing an END statement deletes all sub-
sequent lines of existing programming.

39.

40.

41.

42.

When programming is recorded, the line num-
bers are not made part of the record. This
allows that programming to later be loaded
back into the memory and have different line
numbers.

When recording programs, the process starts
with the line number specified by the GO TO
or END statement accompanying the {
It ends when the last line in the mamllne
programming area has been recorded.

An attempt to duplicate on magnetic cards,
edit, list, or otherwise learn the contents of a
secure program will destroy the program.

Data cannot be made secure.

A program cannot be keyed in and then, at
that time, be treated as a secure program by
the Calculator.

A record of data does contain the names of
the registers from which the data was
recorded.

A LOAD statement puts the information of a
record into the memory of the Calculator.

The Calculator automatically knows where to
put the information of a data record; the
necessary information is on the card.

To load a record of programming, the Calcula-
tor must know at which line to start loading
the memory. This piece of information comes
from a GO TO or GO TO SUB statement
preceding the i

THE MODEL 20 LANGUAGE 5-51

Answers are on page A-2.

1.

Find at least one error in each of the follow-
ing lines.

What is the largest number that can be dis-
played in fixed point? The smallest? The
closest to zero? What is the largest number
that can be displayed under a fixed 5 specifi-
cation?

Write a relational expression that has a value
of 1 if A equals B and B equals C.

Write a statement that assigns X the value
2A+B if Y is greater than 100, and the value
2A-B if Y is fess than or equal to 100.

Write an ENTER statement that assigns a
value to A, and also to B and C at the same
time.

Write a line that adds 1 to the value of C until
C equals 25, and then branches to line 10.
Write it once using i, and once without 1.
{Assume an initial value of —1 for C, and that
the line to be written will have line number
3.)

Write a statement that assigns the number in
the R register designated by the contents of
R5 to the R register designated by twice the
number stored in B.

> p—————p——9— EXERCISES o —& v o o oo

8. Write and execute the line:

Now write:

Press EXECUTE several times:

(i)

{

Explain the results in the display.

9. What is the difference between the following
pairs of statements:

Will the top line turn into the bottom one
if it is stored?

c. (For Math ROM enthusiasts)

Hint: “is a single mnemonic designat-
ing the function ‘anti log base 10".

10. Write a JUMP statement that is equivalent to
the following n-way branch:

5-52 THE MODEL 20 LANGUAGE

oo oo EXERCISES 22— o oo

11. If the following program is run, the results are 12. What is the relational value of each of the
as shown. Why? following expressions:

Results:

With a display of:

CHAPTER 3

1.

Press BACK until you see that part of the
line. Then press FORWARD to return to the
end of the line. Don’t worry about pressing
FORWARD too many times — it won't ad-
vance past the end of the line.

The line is too long. Press CLEAR and write a
new line. Do not attempt to salvage the old
line.

The comma should be a semicolon.

Press: @

CUWEUEEE

o Y AT O ARy R

The first four lines of the only program stored
in the Calculator must be the lines numbered
0, 1, 2, and 3. You could set the program line
counter to 4, but not to b.

Press RECALL.

or

until the display is:

-)

Then,

or

e
BOOBE =)
or

APPENDIX | A-1

—~o—o——<—<o—< ANSWERS TO THE EXERCISES —o—<o—< <+ <

9., 7] would appear in the display, as
F is an incomplete statement. The
£ s will not be considered part of the line
until they are again made part of the display.

10. There is not enough memory for the longer
version produced by the modification. Lines
32 through 59 were unable to move ‘down’
far enough to make room for the new line 31.

11. Remember that when a line containing an

END is stored, all lines following that line are
deleted. As you use a series of consecutive
FORWARD’'s to step through the program,
each ‘completed replica’ is restored, as the
machine cannot be sure that you did not
change something while the replica was at
your disposal. Hence the missing lines.
A series of consecutive RECALL's does not do
this, as each RECALL only brings the next
replica into the display — what is already in
the display is ignored.

CHAPTER 4

1. a. or
b. Lo
C. PR =.I.l i
d. r or i
e. I il oor
f. |I i [Bl i

i. Give yourself a gold star if you noticed
that —ab is ambiguous.

(—a)b

—{ab) =

A-2

APPENDIX 1

—~&—a—o—o—- ANSWERS TO THE EXERCISES —* <<% < <

a. Minus must not be the next item after a
function — use parentheses.

b. Missing right parenthesis; minus and divide
side by side.

c. Parentheses imbalance.

d. R2 cannot go into bY; it should be

e. E must be followed by at least one digit.

f. The number following E cannot have a
decimal point.

g. A number cannot contain a comma.

h. An exponent cannot contain

names.

register

i. The inner-most parentheses are switched.

The mnemonic i
not &

o

1.4

results from pressing ,

—.000000000703, or —7.03E—10. No, the
result of executing the line is zero. Yes,
—7.03E—10 is well within the range of the
machine. The correct answer is not achieved
because the difference between the two num-
bers does not occur until the sixteenth signifi-
cant digit — and calculations are only
performed to 12.

6. The number in R24 is 24.9999999997, which

is displayed as 25 because of round-off. How-
ever, in R register designation, the digits to
the right of the decimal point are dropped.
Thus, R24.9999999997 is simply R24.

7. The subtraction introduces a loss of signifi-
cance which is cumulative. (The multiplication
by 10 only adjusts the exponent, not the
sequence of significant digits).

11111111111
xl = —1
0.11111111111=1.11111111110E-01
X10
B 1.11111111110
X2 - _1
0.11111111110=1.11111111100E-01
X10
_ 1.11111111100
X3 - _—1
0.11111111100=1.11111111000E-01
X10
1.11111111000
As can be seen from the above x, and x, are
not equal to 1.11111111111E-01 (which is
1/9 to 12 significant digits).
CHAPTER 5

1.

a. An absolute GO TO statement cannot con-
tain a variable.

b. Missing quote marks after " &

c. A PRINT statement must have at least one
parameter, or the printed results will be
unpredictable. The comma should be a
semicolon.

d. The first item to the immediate right of an
assignment instruction must be a real vari-
able.

e. The left-most comma should not be there
at all, while the semicolon should be a
comma.

f. The minus three should be in parentheses,
and the parameter of a GO TO statement
cannot contain a decimal point.

9.

APPENDIX I A-3

—o—o—<o—<o—o ANSWERS TO THE EXERCISES —+» o<+ <

g. There is no point in writing anything to
the right of a JUMP statement.

h. The semicolon should be a comma.

i. No GO TO or GO TO SUB statement
preceding the LOAD statement.

j- The only way the value of a flag can be
changed is through the use of CLEAR
FLAG, SET FLAG and END statements.

The largest is 9999999999.99, displayed in
fixed 0. The smallest is —9999999999.99,
displayed in fixed 0. The closest to zero is
either of E—99 or —E—99, in any fixed point
setting.

The largest number that can be displayed
under fixed 5 is 99999.9999999.

111, but not i}

flag A to 1, and meanwhile, store that sum
in A’

The bottom statement means ‘display the
value of the flag denoted by A once A has
been incremented by 1.’

The top statement will not turn into the
bottom one when it is stored.

In each case the

b. There is no difference.
meaning is:

=1

a=2

The reason for the difference is hierarchy.
The top line contains a function and an
exponentiation. The bottom line is the
composition of two functions.

Because of the implied store in Z, the rela-
tional value is stored into Z each time the line
is executed. When Z is zero, that value is 1,
which is stored in place of the zero. But now
Z no longer equals zero, and a 0 replaces the
1, and the process repeats itself.

a. The top statement means ‘display the
value obtained from adding the value of

11.

12.

The way the program is arranged, it is possible
to get to line 5 from line 4, and thus
encounter a RETURN statement while not
actually executing line 5 as a subroutine.
When the =& T is executed, the Calculator
tries to go back to the line after the one from
which it came (via }. Only now there was
no such branch via

a. one
b. one
c. zero
d. zero
e. one

A-4 APPENDIX |

~o—o—eo—<o—<o—< THE DIAGNOSTIC NOTES o —<o—<—<—<—o

Table 1-1 is a comprehensive list of the meanings of the diagnostic M{iTE's for the basic Model 20

Calculator. Within practical limits, Table I-1 attempts to indicate an many of the distinct causes for each
MITE as possible.

The discovery of an error during execution does not immediately interrupt the execution of the line. The
offending operation is either simply not performed, or an alternate operation is performed in its place. The
FHOTE will appear in the display when the line is eventually terminated.

Only one 12 TE can appear in the display at one time. If a statement contains two or more distinct errors,
it is difficult to predict which one will be indicated by the Hi1 TE,

If a line has two or more statements each of which contain errors, the MiiTEk that appears in the display
will be the one for the last statement which had an error.

Table I-1. Diagnostic Notes.

INDICATION MEANING
(HOTE &1 results from general syntax errors, however, certain specific
syntax errors have their own notes.)
a. Missing between statements (usually results in one of the other
conditions causing HOTE 1),

b. Attempt to begin an expression with improper character, e.g., *, -, 1,
=+, =, =, etc.

c. Two instructions side by side.

d. Missing operand (resulting in two side by side operators), or, an argument
of a function is missing.

f. Numeric constant contains a comma, extra decimal point, or quote mark,
etc.

g. Exponent contains an improper character, e.g., decimal point, paren-
thesis, variable, * or -, etc.

h. Exponent contains no digit.

i. Function immediately followed by any operator except +.

i. Empty parentheses, i.e.,

k. R-

I. Variable on the right of =+ is missing or not completely specified.
m. -+ immediately followed by -, #, ., s, etc.

n. Missing quote mark.

o. 374 or GEE followed by anything except a literal or a signed or
unsigned series of digits. Decimal points, parenthesis, variables names,
etc., are not allowed.

p. Key is not permitted during the Enter Mode.

APPENDIX | A-5

—~—<o—<—<—<—< THE DIAGNOSTIC NOTES << —<o <<

Table 1-1. Diagnostic Notes. (cont’d)

INDICATION MEANING

a. Instruction followed by a parameter of the wrong type or illogical value.
b. Instruction is missing a necessary parameter.

c. Taking the square root of a (value) less than zero.

Extra { or missing

Extra i or missing

a. F followed by a {(value} whose integer part is either greater than the
number of available R registers, or is negative.

b. Attempt to designate a flag other than one of flags O through 15.

a. Attempt to store a number into a non-existent or non-available R
register.

b. Attempt to enter a number whose exponent has an absolute value greater
than 99.

A EET has not been preceded by a matching &5 &

A ST or o is followed by a parameter that specifies a line number that
is either:

i. Negative
ii. Greater than one higher than the highest existing line number.
iii. Not matched by a label in the program.

a. Line is too long to be executed or stored. Do not attempt to salvage the
line. Press CLEAR and write a shortened version.

b. Subroutines nested too deeply.

A computation has resulted in an mtermedlate or final result that has
exceeded the range of the Calculator. TE 14 will occur only if flag 14
is not set.

a. Pressing one of the half-keys while an associated ROM is not installed,
unless the key is being used as part of a literal.

b. Attempt to execute an ENTER statement from the keyboard.

c. Attempt to nest ENTER statements.

(continue&)

A-6 APPENDIX |

—~—a—o—+—<—o THE DIAGNOSTIC NOTES o —<+—<—< <<

Table 1-1. Diagnostic Notes. {cont'd)

INDICATION

MEANING

date it.

program.

¢c. No 27T or &

a. Attempt to store a line when there is insufficient memory to accommo-

i. Current program is simply to long.

ii. An old (and probably long) program is still in memory, and while the
new program is being manually keyed in, the remnant of the old one
is still being carried — using up memory. To salvage the situation,
press CLEAR, END, STORE, DELETE, and continue storing the

b. Information on magnetic cards requires more memory than is available.

= preceding |
control of a program.

¢ preceding i i1 has parameter of illogical value.

It when loading information under the

Attempt to record a protected side of a magnetic card.

the next side.

Magnetic card reader operation is not completed; press EXECUTE and insert

Comn Configuration code error — the plug-in ROM's are not arranged in a suitable
manner for a program being loaded from a magnetic card.

Attempted printer operation while the printer is out of paper.

—o—o——o——<o—< MODEL 20 INTERNAL STRUCTURE << <o <

This section is a brief sketch of the internal structure of the Model 20. The intent is to answer some of
the more frequently asked questions about what happens when certain keys are pressed, and especially,

what the display represents.

The account is based on the diagram in Figure 1-1 on page A-9. The diagram is more or less an accurate
reflection of reality, although certain liberties have been taken in order to illustrate the concepts involved.

THE KEYBOARD

As each key is pressed, the keyboard generates a
keycode that represents that key. Keycodes are
eight digit binary-coded-octal numbers.

Most keys represent a symbol or mnemonic that is
to be placed in the display. The keycodes for
these keys are stored in the left-hand side of the
instruction buffer, to be acted on later. Keys that
do not place a symbol or mnemonic in the display
are those keys concerned with editing. Those keys

are detected and acted upon without their key-
codes being placed in the instruction buffer.

THE INSTRUCTION BUFFER

The left-hand side of the instruction buffer holds
(in left-to-right order) the ‘source information’
that is to be dealt with. This information {which
is a line) comes either from the keyboard, as just
described, or, from the uncompiler, which recon-
structs earlier information which has since been
stored with the STORE key.

APPENDIX 1 A-7

—~—<—<—— MODEL 20 INTERNAL STRUCTURE —&—¢—<——<+ <

The right-hand side of the instruction buffer holds
compiled information. This is discussed under
“THE COMPILER".

THE DISPLAY

The display shows the line in the left-hand side of
the instruction buffer, or, the contents of the
result register.

An important thing to remember about the dis-
play is that the display is simply a means to make
visible the information supplied to it — it has no
memory of its own.

The information presented by the display is con-
trolled by the setting of ‘switch’(3). It really isn’t
a switch in the physical sense, although it func-
tions almost as if it were. The setting of this
switch is controlled by the Calculator itself, as it
performs its internal activities; the user does not
have direct control of its setting.

THE COMPILER

The Model 20 has an interpretive compiler. It
rearranges and supplements the incoming informa-
tion of the left-hand side of the instruction
buffer. The compiled information is placed in the
right-hand side of the instruction buffer (in right-
to-left order).

The compiled line has been rearranged, such that
the arithmetic unit can execute it as a series of
operations from right to left; the arithmetic unit
can then perform each operation without having
to know anything about any other operations that
might be further to the left in the compiled line.

The compiled line is formed as the origina! line is
keyed in. The compiled line and the original start
from opposite ends of the instruction buffer and
work towards the center. MiITE &% results if
the two ever overlap each other. Due to the
nature of the compilation process, the relationship
between the length of the original line and the
length of its compiled counterpart is not constant.
This is why maximum line lengths are not
predictable.

The compiler detects any syntax errors in the line,
and sends error information to the note generator.

THE ARITHMETIC UNIT

The arithmetic unit performs the actual activity
specified by the line. It sequentially executes the
operation codes of the line, and places the result
in the result register; it also sends any information
about errors during execution to the note
generator.

The compiled line that the arithmetic unit ex-
ecutes can come either from the right-hand side of
the instruction buffer, or from the User’'s RWM.

THE NOTE GENERATOR

The note generator determines which HidTE is to
appear in the display. It it is an error during
execution, it also determines the line number to
be indicated. This information is then placed in
the resulit register so that it can be displayed.

THE RESULT REGISTER

The result register is used to contain the answer
produced by the arithmetic unit or the diagnostic
information produced by the note generator.

EXECUTE

Pressing EXECUTE connects the compiled line to
the arithmetic unit. Then the contents of the
result register are displayed.

The compiled line remains in the right-hand side
of the instruction buffer. Nothing changes it. This
is why a line can be repeatedly executed, or
executed and then stored, or vice versa, even
though it is no longer visible in the display.
(However, an ‘escapement mechanism’ prevents a
line from being repeatedly stored by a series of
consecutive STORE's.) ‘

STORE

Pressing STORE places the complied line into
memory as the next line, beginning at the place in
memory specified by the program line counter.
The line number is not stored as part of the line.
Instead, there is a special symbol to mark the
start of each line, as well as symbols to identify
the boundries of the programming area.

A-8 APPENDIX |

—~—<o—<o—<+—< MODEL 20 INTERNAL STRUCTURE << <<

STORE (cont'd)

This explains why GO TO and GO TO SUB
statements work (in the slow speed mode) by
counting, and why line numbers are not part of a
record of programming. Line numbers simply
aren’t stored as part of the line.

(Incidently, a GO TO or GTO SUB statement
generally occupies slightly more memory than a
JUMP statement. The compiler leaves extra room
in the compiled statement for the internal address
of the destination — for high speed branching.)

When a compiled line is stored, the compiled
information is also sent to the uncompiler.

THE UNCOMPILER

The uncompiler reconstructs the original of a
compiled line, and adds the line number informa-
tion; that is, the uncompiler makes a replica of
the line.

The replica is sent into the left-hand portion of
the instruction buffer, where it is made visible by
the display mechanism.

The reason the Model 20 has both a compiler and
an uncompiler is for speed, convenience, and
economy. In order to keep computational speed
high, no original lines should be permanently
stored in memory — each line should already be
compiled before it is time for program execution
to begin. However, to compile an entire program
at once requires a great deal of memory. Hence,
the Model 20 compiles a line at a time as the lines
are stored. But this means the original is lost,
once the next line is keyed in. As a consequence,
editing operations use the uncompiler to recon-
struct an original line. Of course, extra paren-
theses which were removed by the compiler can-
not be reconstructed by the uncompiler — it never
knows they were there.

RECALL

Pressing RECALL sends a duplicate of a compiled
line, identified by the program line pointer, to the
uncompiler. There it is made into a replica that
can be displayed, and if necessary edited and
restored.

RUN PROGRAM

Pressing RUN PROGRAM establishes a mode of
operation during which compiled lines in the
program memory are automatically executed, in
order, by the arithmetic unit. The arithmetic unit
has control of the program line counter, so that it
can perform any branching instructions it
encounters during its execution of a line.

OTHER OPERATIONS

Certain other operations can be understood, or at
least partially explained, on the basis of Figure
I-1. For instance, BACK and FORWARD can be
thought of as controlling pointers (1) and (2).
Branching statements control the setting of the
program line pointer, (). It is possible to explain
why the program line pointer cannot be set to a
line number higher than one greater than the
highest existing line number: that place cannot be
explicitly identified unless the line ahead of it is
in existence.

A final word about the pointers (1), (2), and (¥).
They are simply locations in memory whose con-
tents are the internal address of the part of
memory being ‘pointed’ at.

COMPILED LINE

[l<lal+[1]=]A]

e

ARITHMETIC UNIT

i+ During Execution

— ¥

Results

_—

3

3ISTER - 16 CHARACTERS

HENREREEREE

APPENDIX |

READ-WRITE MEMORY

T 1

n
|

-

Figure 1-1. The Internal Structure of the Model 20.

I3 Line 17—
0
. N
EXECUTE L
____d_———fL—:
e
RUN PROGRAM
Line @
Program Line I Line 1
Counter K
a—F ’ Line 2 -
———_—_—_C_o;ra Y A-—Lirf 3—-»4—L‘|n'e 14—
Program Line
—l Counter
[Line 5 .
| R]
, A
l - — -
| [L ———
]
! I-
|
|
|
I
|
| g |
l |
| |
| ==
: : Ir3
| | |R2
} { TR
L____*_.___icc_e‘ss_to_Dita - RO
|
| A
|
B
(|
| C
|
| X
[¥
|
L L 2
p—
1 Word

Bookkeeping for
Basic Calculator
(256 Words}

Bookkeeping for
Plug-in ROM’s
(if any)

User Definable
Subprogram Area
(if it exists)

Mainline

Programming

Area

-—Max R Register

R Registers

Alpha
Registers

A-9

—~—<o—<—<o MODEL 20 INTERNAL STRUCTURE o< << <

internal
RWM

User's
RWM

KEYBOARD

=) oe

s===1==1 000CC 00000
sejesl== 00000 00000
cogeelles | 00000 GRC00
sepesess| A00C0 COC00
T T] COoC CSGIs
4 -t UNCOMPILER —

505 1015
0010100001000001 5
N —— e e—

« Jl INSTRUCTION BUFFER - 72 WORDS

Wale DAL L LD L LI P ET T
@&

Keycodes

/ 1 Word

Compiler Output

Y

N> COMPILER

Syntax Error Information Errors

NOTE GENERATOR

Notes
e
\ RESULT RE¢

> a\'o - 111TT

S m— e’
1 Word

[4 \
DISPLAY MECHANISM - 16 CHARACTERS

(EEANCENNRERNEED

A-10 APPENDIX 1

————< <<+ |DIOSYNCRASIES ¢ ¢ <+ <>

The Model 20 has a few operating characteristics
that differ from what you would normally expect.
In some instances, an illogical or prohibited opera-
tton W|Il produce an unusual result rather than a
HMOTE, or, in addition to a H

a. An attempt to store or execute a line that is
too long may place strange characters in the
display, the most usual being Z=ZE L 1H =

. Press CLEAR and write a shortened ver-
sion of the line.

b. Subtracting a number from itself, when the
number has an absolute value of less than
E—87, will resultin HZTE 18 if flag 14 is a
0. This will not occur, and the correct answer

is obtained if flag 14 is set to a 1.

c. Unpredictable things can occur while storing
or executing lines containing floating point
constants whose exponents contain more than
two significant digits. Most of the time this
will result in H3TE i as an error during
execution, but under the proper circumstances
it can erase the memory.

d. If, while in the Trace Mode, you execute a
line from the keyboard, then 'back’ into the
line and shorten it, and execute it again, the
line will be executed correctly, but printout
will contain the remnant of the previous line.
You can avoid this by pressing CLEAR, and
then rewriting the line.

e. An attempt to designate a (definitely non-
existent) R register in the range ‘R8591' to
‘R16784’ may not produce the customary

‘-, and the ‘contents’ of such a non-
-existent register are unpredictable.

f. Don’t attach significance to the sign of a fixed
point number printed or displayed as zero. If,
when printing or displaying in fixed point, a
number is close enough to zero to appear as
all zeros (.000....), the sign attached to the
number will not necessarily be correct; it will
be the same as the sign of the previously
displayed or printed number.

g. Unexpected displays can result from executing
FIXED and FLOAT statements if:

i. The previously executed statement was a
DISPLAY or PRINT statement, and,

ii. The last parameter in the list for that
prewous statement was a computed value,
such as H+ i

Under these circumstances, a statement like
would result in a display of the
number 5, regardless of what was already in
the display.

h. Some operations require a noticeable amount
of time when they are executed. For instance,
executing an END statement when the entire
memory is filled with mainline programming
may take approximately one or two seconds,
depending upon the size of the memory. The
same thing applies to STORE. While the dis-
play is blank during these type of activities,
do not press other keys, especially STORE
and EXECUTE. The result can be
unpredictable.

—&— << THE PROGRAMMING FORM ¢ <<%

Figure 1-2 is an illustration of the Model 20
programming form. The form is a convenient
work sheet during the writing of a program. Also,
many people find it easier to key in a program
from a programming form than from a printed
listing.

The back of the form (not shown in the illustra-
tion) is a ‘'map’ of the memory — use it to record
the significance or purpose of each of the various
registers used for storage.

If you wish, ignore the boxes into which each line
is divided. They are handy when planning the
appearance of a literal, however.

The shaded area on the right-hand part of the
form is to remind you of the considerations
surrounding maximum line length.

When filling out a programming form, it is an
excellent practlce to distinguish between "O' "
and “zeroes’, and between “I's” and “ones”. See
Figure 1-2. Also, notice the use of the symbol b
to denote a use of the SPACE half-key.

A-11

APPENDIX |

—~——<—<o—<—< THE PROGRAMMING FORM <*o—<—<—<+ <<

| M , w , 4 awz|:0/
49+ 019¢ dSA°% 4sat dsat dsd
T dSad% dsdt dsd¢ dsd% dsd % dSA%,2¢oW=39593859, dsd b
4 >74% dsa; kwn. dsA@: dSa+,]Ad4¥0S9938%3%¢%, dSal|:8
; , : {2+ 010 kh€ci=0 J1|:
1Y, 3=92a009339%2w ANI[D
4g 245, bbb bbbt ity L¥dC
i : : L 42 D24dS u¢
NE | R 4,]3d0>%70¥INODZ, L4
x T LA TH 37 H L3N] $A3 N,
T Y IS0WiNoAIWadIS0d, *, . STHIINNY 0L TS, 194l
. BN 11 DdS|
005 - T A, Wg¥50849539%,° FUNOTE3U3S/ S5 AL LAID
N O 4311074 vz9ss [] . .
6¢v [] O O HILIHMIdAL Y1986 [] T Q\h\ I oI I o/ t_
et X O 430v34 3dvL 43dvd vedss [] 4I0V3IY QYO OINYVIW V0986 [|
SH31SI1934 TvL0L STvH3HdIH3d $X3079 Wod
03033IN INIWINDI
J 40 77 39vd thdxs HIWAVHIOHd eL-1-2 m:ntﬁ\ﬁwﬁmﬁm\R OIL YISO 2T NQDUMW\\ JWYN Wy 90Hd

Figure 1-2. The Model 20 Programming Form.

A-12 APPENDIX 1

———< < RECOMMENDED ROM CONFIGURATIONS o< —<% <

For the sake of compatibility between pre-recorded programs, certain configurations are, or will be,
recommended for the installation of plug-in ROM’s.

As this is written, it is recommended that each of the User Definable Functions ROM, the Mathematics
ROM, and Peripheral Control |, if present, be installed in the slot indicated by Figure |-3.

&

J

W22i
n22iA

>
MATHEMATICS

117204

1B (¢l 6 1) G

SCRATCH TY SCALE

&N

PERIPHERAL CONTROL I

IMMEDIATE
EXECUTE

ICBRCDCDCD D)

FORMAT

TITIN

USER DEFINABLE FUNCTIONS T

CALL WRITE

;

Al

o

LETTER

3 @B @B B B

:

e L D 6

TABLE TRANSFER

k-
9

B D B

1
Tl

0
i

Figure 1-3. The Recommended Configuration for ROM'’s.

The following figures can be filled out to record new recommended configurations, or other configurations
that play an important role in your use of the Calcuiator.

O] @ ®

APPENDIX | A-13

—-o—o—o——<o—eo—< MODEL 20 KEYBOARD o—e—<e < <o -

‘ -
DISPLAY (—-——INPUT / OUTPUT———-—\ (—_PRioWGRAM—'—ﬁ
03 24 26 04 05 30
o ENTER
ﬂ
134 136 101 130 76 31
GO TO
sSuB
71 102 131
@ @ @ @ @
103 132 75
CLEAR GO TO
FLAG N
61 137 100

@ @
60 56 135

1. The numbers under the keys are keycodes.

@
133 41 02

NOTES

2. PAPER is mechanical, and does not have a keycode.

3. The key codes for the half-keys are always the same — regardless of which ROM's are installed.

Figure 1-4. The Model 20 Keyboard.

MEMORY

—DECIMAL—

145 22 23
p EDIT -
[FoRWARD)

20 21 141 142 140 144 143

@ ® ®
e Ty ﬁ w
{‘ [CD (I (@\ ‘®> [@
B | |
o\ KJ u __J K,/)

44 10 104 111 116 123

& a— ey o o T
[w‘ \ I |
A) U

45 11 105 112 117 124

§) CFD fm\ f@\ o
\ } \ I
& - L_/J _ /) _ KJ _/)

46 16 106 113 120 125

[@\ e (1Y (@‘ (@\
L \‘ ‘« { c‘\ ‘ |
. J \J . o\

47 17 107 114 121 126
21 CHY (w1 CRDY (W)Y
i i — .
_ -)\ LJ _

77 40 110 115 L 122 27

T = T

A-14 APPENDIX Il - MODEL 60 CARD READER

HEWLETT-PACKARD
MODEL 9860A MARKED CARD READER

APPENDIX 1l - MODEL 60 CARD READER

A-15

——o—<+—<o—<+—< GENERAL INFORMATION o< <<+ <+ <

DESCRIPTION

The Hewlett-Packard Model 9860A Marked Card
Reader, herein called the Model 60, or simply the
‘Reader’, provides a means of executing or storing
lines that have been encoded on special cards.
These cards are fed through the Model 60, which,
using an optical technique, senses the various
combinations of marks on the card. There is a
combination of marks to represent each key on
the Model 20 keyboard, and as a combination is
detected, it is as if the associated key has been
pressed. A card is encoded to represent a series of
keys by marking various combinations of boxes
on the card with an ordinary black lead pencil.

No peripheral control ROM is required to operate
the Model 60 in a Model 20 Calculator System.

The accessories and equipment supplied with the
Model 60 are listed in Table [1-1.

WARRANTY

Your Model 60 was carefully inspected, both
mechanically and electrically, before shipment. It
should be free of mars or scratches and in perfect
electrical order upon receipt. Carefully inspect the
Reader for damage caused in transit and check the
material listed in Table I[I-1. Also, check the
electrical performance of the Reader by perform-
ing the electrical inspection procedure described in
Supplement A of the 9820A CALCULATOR
SYSTEM ELECTRICAL |INSPECTION
BOOKLET. (Supplement A is supplied with the
Reader, and should be installed between pages 36
and i/ of the Inspection Booklet.)

Service contracts are available for your Reader.
Contact your local Hewlett-Packard Sales and
Service Office for further information.

INSTALLATION

With the power cord removed from the Mode!
9860A, look through the clear plastic window of
the power module located on the rear of the
Reader. The small arrow on the switch should
point to the line voltage (120 or 240) which will
be used. If the switch is not set to the correct
voltage, remove the fuse (see Figure II-1) and
position the switch so that the arrow points to
the correct voltage to be used. Replace the fuse
and connect the power cord to the rear of the
Reader.

CAUTION

DO NOT APPLY OPERATING POWER
TO THE MODEL 9860A MARKED CARD
READER UNLESS THE LINE VOLTAGE
SWITCH ON THE REAR PANEL IS IN
THE PROPER POSITION, OTHERWISE,
DAMAGE TO THE POWER TRANS-
FORMER MAY RESULT.

A. Remove the power cord and slide the window
over. Then pull the lever to release the fuse.

~— 240V / 120V —>

B. Set the Line Voltage Switch to the proper
position.

Figure 11-1. Setting the Line Voltage Switch.

The 9860A can be rewired to operate on either
100V or 220V (+b% —10%) line voltages. For
further information, contact your nearest
Hewlett-Packard Sales and Service Office.

A-16 APPENDIX II

MODEL 60 CARD READER

—o—o—o—o—o—o GENERAL INFORMATION - —<o <+ <<

Table 11-1. Accessories and Equipment Supplied
with the Model 60 Card Reader.

aTy. ITEM PART NO.
Interface Cable Assembly 11200A
AC Power Cord 8120—-1575

09160—-67901
09820—-90050
93202885

1

1

1 Spare Lamp*

1 Supplement A**

50 Model 20 Program and Data Card

2 Operating Manual t 09860—90001
1 Diagnostic Cardt 09860--90002
25 Program Cardt 9320-2085
25 Data Cardt 9320—-2088

*Located in the instrument,
“CHANGING THE LAMP"".

under the right side cover. See

**To be added to the Modet 20 ELECTRICAL INSPECTION
BOOKLET.

1This material is for use in Model 10 Calculator Systems. In general,
it is not applicable to a Model 20 System.

To protect operating personnel, the NATIONAL
ELECTRICAL MANUFACTURER’'S ASSOCIA-
TION (NEMA) recommends that the Marked Card
Reader cabinet be grounded. The Marked Card
Reader is equipped with a three-conductor power

cable which, when plugged into an appropriate
receptacle, grounds the cabinet of the Marked
Card Reader. The center pin on the power cable’s
three-pronged connector is the ground connection.

Connect the 1/O Cable to the rear of the Reader
by aligning the keys of the 1/O Cable connector
with the keyways on the instrument’s connector.
Then, rotate the knurled barrel on the 1/O con-
nector clockwise. This will draw the two
connectors together.

Turn the calculator OFF and insert the |/O Card
into the rear of the Calcualtor. The card is keyed
and cannot be inserted incorrectly. It may be
inserted into any one of the four {/O connectors
on the rear of the Calculator. Connect the
Reader’s power cord to one of the power outlets
on the rear of the Calculator.

The Model 60 is switched on by pressing the
button on the front of the instrument. When
power is applied, the button will light. Power is
removed by pressing the button again.

—~—<—<—<+—< MARKING MODEL 60 CARDS <+ <+ << <

MEMORY —DECIMAL— l L J
Conest] (eeon] (oA | (et ——
145 22 23
. EDIT N DISPLAY ————INPUT / OUTPUT N p PROGRAM N
NORMAL] { TRACE (oELeTE] [insERT] (RecaLL BACK | (FORWARD) CLEAR ENTER] [DISPLAY] [PRINT | [SPACEN st 1 ((Load) [Recoro
NORMAL| | TRACE e LINSERT | [RECAL K] FORWARD LE? NTER | DISPLAY] SPACEN LSt
20 21 141 142 140 144 143 0] 24 25 27 26 04 05 30
e —————— =
T8y (D oy 0D CNDY (3 ‘ S
: L ENTER
. ‘ : . e A X > Jume [ENDJ
44 10 104 1N 16 123 134 136 101
RS D CED (3D oy (T " co o
: * 7 8119 [I B
45 1 \ | 105 112 117 124 52 67 70 7 42 1
cay JFD KD Py U
' 4 5 6 y LZ \ | FLA @
46 16 106 113 120 125 103 132 36
i Wi s S oo v Wl oy oy — 0 Y [
i (\ R ‘ \ L GO T0
47 17 107 114 121 126 3 100
2 e (A (R 7D ~ *\ fﬁ“"\ CoN T T
! i L O j (J L EXECUTE “ | RUN PROGRAM | | sTop i STORE |
3 . X ' ,/ - o \) _J
77 40 L 110 115 122 127 135 133 02
PR e T T J

1. The numbers under the keys are keycodes.

2. PAPER is mechanical, and does not have a keycode.

3. The key codes for the half-keys are always the same — regardless of which ROM's are installed.

Figure 11-2. Model 9820A Key-Codes

APPENDIX Il - MODEL 60 CARD READER

~
98204 PROGRAM é CARDNO. >
AND DATA CARD
KEY | CODE |SKIP{ 100140 20 10[4 2 /@
-
A 1o O ooooos
—__|
+ I EEEEEE =)
—
+ 53 DE‘E:}E]EE—E\@
| AEEIE =
—— -
— 13700 s=tesa=
A lle) DElooooos
EXec|/34 D 0 &—=ts O = /@
PN = ———
T L —
= === === =
—— -
OloO oo0o@o o
OO0 O o0 o o
+ — -
EIEEEEEEEEE
T — -
=== ===
; —
Olooo o oo o
DOoOOooOoa'lo oo
EEEE=EET=E
—— -
oloo o ooo o
—— -
i e A e e e N S B
T + — -
Doooo0o g
o000 oo Oooog
— -
==
oloo o oooo
— -
EIE=EEEEEEE
— -
O oo oo o
} —
D00 oo o dD
— -
DOiom@m o O; D O
I ‘ ——
=== ===
——u—
=== == ===
OOoO'OoO O olo D @
t T —— -
=== == =] /@
A ———
STDRE = D02 . INSERT THIS SIDE UP
RUN PROG.=133 2. USE SOFT PENCIL
3, ERASE COMPLETELY
4. MARKING SKIP COLUMN CAUSES
THAT ROW TO BE SKIPPED

.

(D Strobe marks.
®@ SKIP is marked to cover an error.

® *“SKIP 177's” turn the Reader “off”. SKIP 177 is not a
key-code — it is an instruction to the Model 60 only.

Figure 11-3. The 9820A Program and
Data Card for the Model 60.

The two columns of the card marked KEY and
CODE are used to record an instruction (i.e. RUN
PROGRAM) and its key-code {i.e. 133). See
Figures 11-2 and 11-3.

The columns marked 100, 40, 20, 10, 4, 2 and 1
are for marking the key-code for an instruction.
These boxes are marked so that the value of the
boxes marked on a row, when totaled, equals the
key-code of the desired instruction. For example,

A-17

MARKING MODEL 60 CARDS ——< <o

if the instruction was EXECUTE (key-code 135),
you would mark the 100, 20, 10, 4 and 1 boxes
in that row (100 + 20 + 10 + 4 + 1 = 135).
Figure 1I-2 shows the key-codes for your Model
9820A Calculator.

The SKIP cotumn, if marked, will cause the Model
60 to ignore any boxes that are marked on that
row. Marking the SKIP column can be used as an
alternative to erasing; should you make an error in
marking a row, you may either erase the error and
correct it, or mark the SKIP column.

Near the bottom of the card, there is a pre-
printed mark that intersects all of the channels on
the card. This mark, interpreted by the Reader as
SKIP 177, causes the Reader to stop reading the
card. When a SKIP 177 is seen by the Reader, no
information beyond that point on the card is
transferred to the Calculator. This prevents the
possibility of any marks present near the bottom
of the card (e.g., program remarks, etc.) being
interpreted by the Reader as information to be
transferred to the Calculator.

Always use a blunt, soft-graphite pencil to mark a
card. If the pencil is sharp, you may gouge the
surface of the card, making any required correc-
tions impossible. A felt tip or ball point pen
should never by used; marks made with some of
these devices dry with a shiny surface. The photo
cells in the Reader respond only to a dull finish.

It is not necessary for you to completely darken
an entire box that you wish to mark. The photo
cells can ‘see’ a single mark as small as .5 mm
(.02") in width. A single line drawn through the
box with a blunt pencil will be seen. Be sure,
however, that the line extends completely through
the box and slightly extends through the vertical
sides of the box.

If you wish to mark two or more adjacent boxes
on the same row, simply draw one continuous line
through the boxes.

Never mark between the STROBE marks along
the edge of the card, because these marks will be
read as STROBE marks and will cause incorrect
operation.

A-18

APPENDIX 1l - MODEL 60 CARD READER

——o—o—<—< MARKING MODEL 60 CARDS &<+ <+ < <

Errors may be corrected by completely erasing
incorrect marks. Use a soft eraser. Hard ink
erasers may roughen the surface of the card. A
rough card surface will reflect less light than a
smooth card surface and may be seen by the
photo cells as a mark.

Never use a card that has become soiled, curled,
or creased. The photo cells are sensitive and could
interpret a smudge or crease as a mark.

WHAT TO PUT ON THE CARD

Think of the card as a means to automatically
cause a series of keys to be pressed. The marks on
the card determine which keys. Considered in this
way, you can see that you can do many things
through the Model 60 that you can do at the
keyboard.

There is one very important thing to keep in
mind, however. Some of the keys on the key-
board do not simply put a mnemonic into the
display, but cause immediate activity of some
other type (for instance, BACK, or RECALL).
These keys can take more time to perform than
there is between the reading of consecutive rows
of boxes on the card. If a new key-code is given
to the Model 20 before it has had time to finish
completely with the previous key-code, the results
can be unpredictable, even though a resulting
display may seem correct. The keys that have
execution times long enough to cause this
problem are:

ERASE FORWARD
DELETE LIST
INSERT EXECUTE
RECALL RUN PROGRAM
BACK STORE

For this reason, the Model 60 is intended pri-
marily to enter lines and then do one of these
things: EXECUTE, STORE, or RUN PROGRAM.
We strongly recommend that no more than one of
the keys in the list above be encoded on a card,
and that such a key be the last key-code encoded
on the card.

[t is a good practice for the last mark encoded on
the card to be 'SKIP 177', see Figure 11-3. This
will help prevent stray marks on the card from
causing erroneous entries.

Figure 11-4, Inserting a Card into the Reader.

If a line is longer than can be encoded on a single
card, simply encode the first part of the line on
one card, and the second part on another. Neither
card needs any special encoding; remember: ‘'the
card is simply a series of keystrokes’. Insert the
cards, one after the other, in the obvious order.

NOTE

Encoding an undefined key-code (i.e., one
that does not correspond to a key} can
result in unpredictable results.

Figure 11-5. The Card Stop in its Extended Position.

APPENDIX Il - MODEL 60 CARD READER A-19

—-o—o—o—<o—o—o—< USING THE READER << <o < <

To accommodate long cards, the Reader is equip-

ped with an adjustable card stop. When the card a
stop is placed in its extended position, the Reader -
will accept a longer card. To extend the card stop, lﬁ,g]]
simply pull the stop into its extended position. CARD NO.
9820A DATA CARD
PART NO. 9320~1641
8 4 2 1
THE DATA CARD - - - -
Figure 11-6 shows a special data card for entering =)= - = == —:
data during programmed ENTER statements. The -- = = =
last key-code on the card is RUN PROGRAM. _ -_-- 0 o o
% m WM (O O 0 3
The format of the card is: y -_- o O o
Minus § - s | O O O
e eiO2 e Minus : —=====
-mar . . z £ _
card. Only the digits D!g!t gé ;l__ -- O o =
need to be filled in. Digit o= e -_— g s
. Ex 3 I N e Bl s R ——
[a] E -_—
E [] - - = .
. . . %E é! - s |] =] i:l:
Decimal Point g« 5 -- = 0 =
Digit 23 6 - em | S O
g z3 T T
Digit i A
| e ——
. EE - e {0 O O O
o — L———_
. "] - Em i O i:l—
_ —
Enter Exponent s - - O 9o =
Minus '?S‘; E - - Em o
Back E% - - . -_
g::lp f E (=) 70 == m=m - :
1p E z -
Skip g« - -
Skip E §w. - _—
Digit ruz - —
Digit %(;% - w0 O 1:1_
Run Program 235 | —— -
- - e O O O O3
- N —
The entire number is made negative by marking FUN PROGRAM = - - -
what is really the SKIP channel for the second
Minus at the top of the card. If the number is to . INSERT THIS SIDE UP AL LEAL A
be entered as a fixed point number, simply leave O oLy S O C e 6-c o
all the exponent information blank. This causes 4. MARK THE BOXES SO THAT ;:‘Z’ = - ;f —-==
the exponent to be entered as E00, which has no LOUALS THE NOVBER- T e e m -
effect on a fixed point number. _ Y,
If an exponent is to be made negative, the SKIP .
for the Back is marked. Normally, the Back This card has been marked to enter the number
removes the preceding Minus; by marking the —123.456.
SKIP, it stays. The four SKIP’s following the Back
are to allow time for the Back to be performed Figure 11-6. The Model 20 Data Card,

before the digits of the exponent are entered. Part Number 9320—-1641.

A-20

APPENDIX Il - MODEL 60 CARD READER

—-o—p—p—o—o—o—o— |USING THE READER &o—e2—e—o—o—o—

HOW THE READER WORKS

Inserting a card into the Model 60 will automatic-
ally start the motor, which will draw the card
through the instrument. As the card is drawn
through the instrument, it is viewed, across its
width, by nine light-sensitive photo cells located
in the instrument’s cover. As the card moves
through the Model 60, each photo cell indepen-
dently monitors the light reflected from its
column. If a box is marked, the light reflected

from the card suddenty diminishes. The photo cell
‘sees’ this reduction in reflected light and remem-
bers that a box has been marked. Thus, the card
is read one frame {one row of boxes) at a time.

As the STROBE marks, located between the
frames, pass under the STROBE photo cell, the
Reader sends the information of the previous
frame to the Calculator, provided SKIP was not
marked.

—~—<—<—< << CHANGING THE LAMP <+ <<%+ <+ <+ <

Occasionally the lamp which lights the card will
require replacing. A defective lamp will prevent
the motor, which draws the card through the Card
Reader, from operating. Always check first for a
burned out lamp when cards fail to feed properly.
Light from a correctly functioning lamp can be
seen when looking into the card slot with the
Calculator and Card Reader turned on.

if the card fails to feed and the lamp glow is not
visible in the card slot, replace the lamp by
following these instructions.

Access to the lamp in the card reading assembly is
obtained by grasping the top of the card slot with
your hand and pulling upward. The top of the
Card Reader is hinged and will pivot up to reveal
the lamp.

Figure 11-7. Exposing the Lamp.

A replacement lamp is located inside the Card
Reader behind the right side panel. Remove the
sponge plastic cushion which protects the spare
lamp.

CAUTION

THE LAMP IS VERY FRAGILE. ONE
SIDE OF THE CUSHION HAS A SLIT
CONTAINING THE LAMP.

Pull the cushion toward the front of the Card
Reader at a very shallow angle. Pulling the
cushion at right angles to the side frame will
break the lamp.

Figure 11-8. Removing the Spare Lamp.

APPENDIX 1l - MODEL 60 CARD READER

—~&—<—<—<o—<o—< CHANGING THE LAMP

Remove the lamp from the card reader assembly.
To prevent breakage, do not grasp the lamp by
the glass cylinder. Instead, using a screwdeiver or
similar instrument, placed against the lamp’s left
metal cap, push the lamp toward the right until
both metal caps clear their spring clamps and the
lamp is released.

To install the replacement lamp, position each
metal cap over its spring clamp with the small
spring in the glass cylinder to your left; then,
simultaneously press both metal caps into the
spring clamps. Do not press against the glass
cylinder; that may break the new lamp.

Return the top cover to its original position.
Replace the cushion, the side cover and the four
retaining screws. You will probably want to order
a new lamp at this time from your local Hewlett-
Packard office. Then you will always have a spare
famp on hand.

A-21

Figure 11-9. Removing the Old Lamp.

After replacing the lamp run the Card Reader
exerciser to verify proper operation.

INDEX

o o O P G P P O P P S O O

This is an index of the operating and programming information for the Model 20 Calculator. Information
concerning the Model 60 Marked Card Reader (pages A14 through A21) is not included in the index. Page

numbers in bold are primary references.

A

absolute go to statements, 3-7, 5-22
accuracy, 4-4

addition, 44, 4.5, 5-3

addressing, 3-9, 5-8

algebraic language, 2-5

alpha registers, 1-2, 2-8, 4-2
ambivalent group, 2-9

argument, 4-7, 5-3

arithmetic impossibilities, 3-13, 4-11
arithmetic operators, 4-4, 4-5, 5-3
arithmetic unit, A-7 thru A9
assignment statements, 3-2, 4-5, 4-12, 5-16, 5-20

B/

back, 3-2 thru 3-7, 3-12, 3-13, A-10
binary operators, 5-3

blank, 2-10, 5-47

branching, 3-9, 5-8

C/

card reader
— magnetic, see magnetic card reader
— marked, see marked card reader
CFG, 2-10, 5-2, 5-32
character, 2-0, 2-5, 2-9
cleaning the calculator, 1-6
clear, 2-0, 2-1, 3-1 thru 3-5, 3-12, 547, A-10
clear flag
— key, 2-10, A-13
— statements, 5-2, 5-32
colon, 2-10
comma
— use, 4-1, 5-8
— key, 2-10, A-13
compilation, 3-3, A-7
compiler, 3-7, A-7, A9
computed go to sub, 5-46
conditional branching, 5-8, 56-34
constants, 4-1, 4-7, 5-1
also see real constants
convenience outlets, 1-3

(D

data storage, 2-8
also see assignment statements
decimal point
— use, 4-1 thru 4-4
— key, 2-10, A-13
also see fixed statements and float statements

definable function area, 2-8, A-9
definable functions, 4-7

also see user definable functions ROM
definable functions ROM, 4-7, 5-3, 5-10
delete, 3-2 thru 3-4, 3-11
diagnostic notes, 3-6, A-4

also see the various notes

display
— the, 2-1, 3-2, 3-3, 3-5, 3-7, A-7, A9
— key, 2-10, A-13

— statements, 5-13
— reversion to floating point, 4-4, 5-13
— idiosyncracy, A-10
divide
— key, 2-10, A-13
— operation, 4-5, 5-3
division by zero, 3-13, 4-11
DSP, 2-10, 5-13

E/

E, 2-10, 4-1 thru 44
editing
— within lines, 3-3
— upon programs, 3-10, 3-11
electrical inspection, 1-2
END, 2-10, 5-36
— key, 2-10, A-13

— statements, 3-7, 3-8, 3-10, 3-13, 5-28 5-31, 5-33,

5-36, 5-42, A-10
end-of-line (i), 2-1, 3-4 thru 3-6, 3-10, 3-14
ENT, 2-10, 5-18
enter
— key, 2-10, A-13
— mode, 5-18
— statements, 2-1, 3-13, 5-18, 5-27
also see, 2-1
enter exponent, 4-1
equal to
— key, 2-10, A-13
— use, b-3, 5-34, 56-3b
erase, see memory erase
errors
— during execution, 3-5, 3-13
— syntax, 3-5, 3-13
exclamation point, 2-10
execute, 2-0, 2-6, 3-2, 3-4, A-7, A-10
exerciser program, 1-2
exponent, 4-1, A-10
exponentiation, 4-7, 4-11, 5-3
expression, 4-7, 5-4

PP PP P P O O O O

F

fan filter, 1-b
figurative syntax, 5-11
fixed

— point, 4-1, 4-4, 5-11

— statements, 5-11, A-10
fixed n key, 2-1, 2-9, 44, 5-11
flag

— key, 2-10, 5-2, A-13

— statements, 5-32, 56-33
flags, 3-1, 5-2, 5-32, 5-36
flag 0, 5-32
flag 13, 5-2, 5-21
flag 14, 4-11, 5-2, 5-34, A-10
flag 15, 4-11, 5-2
FLG, 2-10, 5-2
float

— point, 4-1, 44, 5-11

— statements, 5-11, A-10

float n key, 2-1, 2-9, 2-10, 4-4, 5-12, A-13

float 9, 3-1, 5-12

FLT, 2-10, 5-11

forward, 3-3 thru 3-6, 3-10, 3-12, A-13
functions, 4-1, 4-6, 4-10, 5-3

fuses, 1-3, 1-4

FXD, 2-10, 5-11

G

gazinta, 5-6
go to
— key, 2-10, 3-7, A-13

— statements, 5-18, 5-22, 5-23, 5-27, 5-28, 5-43, A-8
go to sub statements, 5-10, 5-18, 5-24, 5-27, 5-28, A-8

greater than

— key, 2-10, A-13

— use, 5-3
grounding requirements, 1-3
GSB, 2-10, 524
GTO, 2-10, 5-22, 5-23
guard digits, 4-4

H

half keys, 2-1, 2-4
hierarchy, 4-8, 4-10
high speed branching, 5-28, 5-29, 5-37

1/0 card, 2-4

1/0 expander, 2-5
idiosyncrasies, A-10

IF, 2-10, 5-34

if statements, 5-34

implied multiply, 4-5, 4-10, 5-3

implied store into Z, 4-9, 5-17, 5-28
initialization

— initial turn on procedure, 1-4

— during turn on, 3-1

— of program memory, 3-8
insert

— ing keys, 3-4

— ing lines, 3-11
inspection procedure, 1-2
instruction buffer, A-6, A-7, A-9
instructions, 5-6, 5-8

o

JMP, 2-10, 5-29
jump statements, 5-9, 5-29, A-8
jump to sub, 5-46

K

key codes, A-6, A-9, A-13, A-16, A-17
keyblocks, 2-0, 2-1, 2-3
keyboard

— magazine, 1-2

— drawing, 2-0, A-13

— discussion, 2-1, A-6

— load statements, 5-41

L

labeled go to statements, 5-23
labels, 5-2, 5-7, 5-9

LED’s, 2-2
less than (does not exist), see 5-3
less than or equal to
— key, 2-10, A-13
— use, 5-3
line frequency, 1-3
line length, 3-2, A-7

line numbers, 2-7, 3-7, 3-9, 3-11, 3-12, 5-8

line voltage, 1-3
lines, 2-b, 2-6, 2-9, 3-1, 5-7
linking programs, 5-43, 5-44

list
— (definition), see lists
— key, 3-9, A-13
listing programs, 2-9, 3-9
lists, 5-8

literal syntax, 5-11

literals, 2-4, 6-2, 5-6, 5-7, 5-12 thru 5-14, 5-19

load statements, 5-41 thru 5-43

local subroutines, b-10, 5-20, 5-26, b-27, 5-3b

LOD, 5-10, 5-41 thru 5-44
logarithms, 4-6, 4-8, 4-11

INDEX

INDEX

O

magnetic card holder, 1-2
magnetic card reader, 2-2
also see load statements and record statements
magnetic cards, 1-2, 2-3
mainline programming area, 2-8, 3-7, 3-9, A-9
marked card reader, 2-4, A-14 thru A-21
math ROM, 4-1, 4-6 thru 4-8
mathematical expressions, 5-3, 5-4
mathematica!l impossibilities, 3-13, 4-11
max r register, 2-8, 2-9, 3-8, 3-10 thru 3-12, 5-37, 5-45
maximum line length, 3-2
maximum line number, 3-7, 5-31, 5-37
mechanics group, 2-9
memory
— size, 1-1
— types, 2-7
— drawings, 2-8, 3-8, 3-9, 5-37, 5-41 thru 5-43, A-9
— map, A-10
memory erase, 2-1, 3-1, 3-8, 3-9, 5-2
messages, 2-2
minus, 44, 4-5, 5-3
mixed expressions, 5-b
mnemonics, 2-0, 29, 3-1, 3-2
model 60 marked card reader, A-14 thru A-21
modifying a line, 3-3, 3-10
modifying programs, 3-10 thru 3-12
multiple assignment statements, 4-5, 4-12, 5-16
muttiplication, 4-5, 5-3

N

N max, 5-45
also see max r register
nesting
— parentheses, 4-8
— subroutines, 5-26, 5-35, 5-37
normal
— key, 29, A-13
- mode, 3-1, 3-14
not equal to, 2-10, 5-3
notes, 3-1, 3-5, 3-6, 3-13, 4-10, A4
note 01, 3-6, 3-13, 4-1, 4-3, 5-22, 56-23, 5-31, A4
note 02, 3-6, 5-12, 5-15, 5-40, A5
note 03, 3-6, A5
note 04, 3-6, A5
note 05, 3-6, 4-3, 5-16, 5-32, 5-33, 5-45, A-5
note 06, 3-6, 4-6, 5-16, A-5, A-10
note 07, 3-6, b-2, 5-36, A5
note 08, 3-6, 5-29, 5-31, 5-46, Ab
note 09, 3-2, 3-6, 5-26, A5, A-7
note 10, 3-6, A5, A-10
note 11, 2-1, 3-6, 5-18, 5-20, A-5
note 12, 3-6, 3-8, 5-41, 543, A-6
note 13, 2-3, 3-6, 5-38, 5-40, A-6
note 14, 2-3, 3-6, 5-38, 5-40, b-41, 56-43, 5-45, A-6

note 15, 2-4, 3-6, 542, 5-43, A-6
note 16, 1-5, 3-6, A-6
note generator, A-7
null program, 2-7, 3-1
number entry, 4-2

also see enter statements
n-way branch, 5-45

0/

operands, 5-3

operations (numerical), 4-1

operators, 4-4, 4-5, 4-8, 4-10, 5-3

options
— 001 {memory), 1-1, 1-2, 2-7, 2-8
— power cord, 1-2

overflow, 4-11

overlays, 2-3, 2-4, A-12

P

paper
— button, 2-1, 5-15
— printer, 1-1, 14
parameters, 5-8
parenthesis, 3-7, 4-3, 4-5, 4-8, 4-10, 5-17, A-8
peripheral control ROM’s, 2-4
peripherals, 2-4
plug-in ROM’s, 1-1, 2-1, 2-3, 24, 2-7, 2-9, 3-7
— configurations, 2-4, A-12
— initialization, 3-1
plus, 4-4, 4-5, 5-3
power cords, 1-2
power requirements, 1-3
pre-recorded programs, 1-2
pre-written programs, 1-2
print
— key, 2-10, A-13
— statements, 2-6, 5-14
printer
— loading, 1-4
— paper, 1-1, 1-4
— the, 2-2
— window, 1-6
program, 2-7, 5-8
program execution, 2-7, 3-13, 3-14
program line counter, 2-7, 3-7, 3-10 thru 3-12, 5-8, 5-37,
A-7 thru A-9
program storage {memory aspects) 2,8, 2-9
programming form, A-10
PRT, 2-10, 5-14

o

qualifiers, see if statements
guantities, 4-7, 52
quote fields, 2-1

also see literals

A P P P P P P O O O O

R

R {), 2-8, 2-10
also see R registers, 4-2
R registers, 2-8, 3-8, 3-11, 4-2, 5-45, A-10
real constants, 4-1, 5-1, A-10
real variables, 4-2, 5-1, 5-2
rear panel, 1-3
REC, 2-10, 5-37, 5-40
recall, 3-7, 3-11 thru 3-13, A8
record ‘‘data’ statements, 5-40
record statements, 5-37
recording programs, 5-37, 5-38
records, 2-2, 5-9
registers, 1-1, 1-2, 2-8
also see R registers and alpha registers
relational expressions, -3, 5-4
relational operators, 4-8, 5-3
relative addressing, 3-9, 5-9
relative go to statements, 5-9, 5-22
replacing fuses, 1-4
replicas, 3-7, 3-10 thru 3-13, A-8
result register, A-7
RET, 5-10, 5-24
return
— key, 2-10, A-13
— statements, 5-10, 5-24
right arrow, 2-10
also see assignment statements
ROM
— internal, 2-7
— plug-in, see plug-in ROM’s
— slot, 2-3
rounding, 5-4, 5-12, 5-3b
rules of mathematical combination, 4-10
run program, 3-10, 3-13, 5-18, 5-35, A-8
running a program, 3-13
— in the trace mode, 3-14
RWM, see memory

S

“secure” programs, 5-38
“secure”’ record statements, 5-38
segments, 3-3
select code, 2-b
semi-colon, 2-6, 2-10, 3-2, 5-7
service contracts, 1-2
set flag
— key, 2-10, 5-2, A-13
— statements, 5-32
SFG, 2-10, 5-32
sides, 2-3
significant digits, 4-3
slash, 2-10, 4-5
slide switches, 1-3, 14
slot, see ROM slot
slow speed branching, 5-28

space key, 2-10, A-13
space N
— key, 2-1, 2-10,’A-13
— statements, 5-15
square root, 4-6, 4-11
stacking programs, 3-8, 3-9, 5-9, 5-41
statements, 2-6, 5-6, 5-7
stop
— key, 2-9, 2-10, 3-9, 3-10, 3-13, A-13
— statements, 3-10, 3-13, 5-27, 5-35
STP, 2-10, 5-25, A-13

store, 2-10, 3-4, 3-7, 3-9 thru 3-12, A-7, A-10

storing programs
— {with STORE etc.}, 3-6, 3-8, 3-9
— in the trace mode, 3-14
— with mag cards, 5-41, 5-43
subtraction, 4-4, 4-5, 5-3, A-10
subroutines, 5-10
supplied functions, 4-7, 5-3
symbol, 2-0, 2-9, 3-1
symbolic addressing, 3-9, 5-2, 5-7, 5-9
syntax, 2-5
also see chapter 5
syntax errors, 3-5, 3-13
syntax group, 2-9

o

times sign, 4-5
also see multiplication
trace
— key, 2-9, 2-10, 3-19, 544
— mode, 3-14, A-10
— statements, 5-44
TRC, 2-10, 3-14, 5-44

U

unary minus, 44, 4-10, 4-11
unary operators, 5-3

unary plus, 44, 4-10, 4-11
uncompiler, A-6, A-8, A9
unconditional branching, 5-8
underfiow, 4-11

up arrow, 2-10, 4-7

INDEX

user definable functions ROM, 2-4, 5-10, 5-20, 5-26, 5-33,

5-35, 542
user's RWM, 2-7
also see memory

V)

values, 4-7, 5-6
variables, 4-1, 4-2, 5-1
volt-amps, 1-3

W

wattage, 1-3
words, 2-9, A9

(There isno X, Y,or 2.}

UNITED STATES

ALABAMA

P.0. Box 4207

2003 Byrd Spring Road S.W.
Huntsville 35802

Tel: (205) 881-4691

TWX: 810-726-2204

ARIZONA

2336 E. Magnolia St.
Phoenix 85034

Tel: (802) 252-5061
TWX: 910-951-1330

5737 East Broadway
Tucsan 85716

Tel: (602) 298-2313
TWX: 910-952-1162

CALIFORNIA

1430 East Orangethorpe Ave.
Futlerton 92631

Tel: (714) 870-1000

3939 Lankershim Boulevard
North Hollywood 91604
Tel: (213) 877-1282

TWX: 910-499-2170

1101 Embarcadero Road
Palo Alto 94303

Tel: (415) 327-6500
TWX: 910-373-1280

2220 Watt Ave.

Sacramento 95825
Tel: (916) 482-1463
TWX: 910-367-2092

9606 Aero Drive
San Diego 92123
Tei: (714) 279-3200
TWX: 910-335-2000

COLORADO

7965 East Prentice
Englewaod 80110
Tel: (303) 771-3455
TWX: 910-935-0705

CONNECTICUT
12 Lunar Drive
New Haven 06525
Tel: (203) 389-6551
TWX: 710-465-2029

FLORIDA

P.0. Box 24210

2806 W. Oakland Park Bivd,
Ft. Lauderdale 33307

Tel: (305) 731-2020

TWX: 510-955-4099

P.0. Box 13910
6177 Lake Ellenor Dr.
Orlanda, 32809

Tel: (305) 859-2900
TWX: 810-850-0113

GEORGIA

P.0. Box 28234

450 Interstate North
Atlanta 30328

Tel: (404) 436-6181
TWX: 810-766-4890

HAWAIL

2875 So. King Street
Honolulu 96814

Tel: (808} 955-4455

ILLINOIS

5500 Howard Street
Skokle 60076

Tel: (312} 677-0400
TWX: 910-223-3613

INDIANA

3839 Meadows Drive
Indlanapolls 46205
Tel: (317) 546-4891
TWX: 810-341-3263

ELECTRONIC
SALES & SERVICE OFFICES

LOUISIANA

P.0. Box 856

1942 Williams Boulevard
Kenner 70062

Tel: (504) 721-6201
TWX: 810-955-5524

MARYLAND

6707 Whitestone Road
Baltimore 21207

Tel: (301) 944-5400
TWX: 710-862-9157

P.0. Box 1648

2 Choke Cherry Road
Rockville 20850
Tel: (301) 948-6370
TWX: 710-828-9684

MASSACHUSETTS
32 Hartweil Ave.
Lexington 02173
Tel: (617) 861-8960
TWX: 710-326-6904

MICHIGAN

21840 West Nine Mile Road
Southtield 48075

Tel: (313) 353-9100

TWX: 810-224-4882

MINNESOTA

2459 University Avenue
St. Paul 55114

Tel (612) 645-9461
TWX: 910-563-3734

MISSOURI

11131 Colorado Ave.
Kansas Clty 64137
Tel: (816) 763-8000
TWX: 910-771-2087

148 Weldon Parkway
Maryland Heights 63043
Tel: (314) 567-1455
TWX: 910-764-0830

NEW JERSEY

W. 120 Century Road
Paramus 07652

Tel: (201) 265-5000
TWX: 710-990-4951

1060 N. Kings Highway
Cherry Hill 08034

Tel: (609) 667-4000
TWX: 710-892-4945

NEW MEXICO

P.0. Box 8366

Station C

6501 Lomas Boulevard N.E.
Albuquerque 87108

Tel: (505) 265-3713

TWX: 910-989-1665

156 Wyatt Drive
Las Cruces 88001
Tel: (505) 526-2485
TWX: 910-983-0550

NEW YORK

6 Automation Lane
Computer Park
Albany 12205

Tel: (518) 458-1550
TWX: 710-441-8270

1219 Campville Road
Endicott 13760

Tel: (607) 754-0050
TWX: 510-252-0890

82 Washington Street
Poughkeepsie 12601
Tel: (914) 454-7330
TWX: 510-248-0012

39 Saginaw Drive
Rochester 14623
Tel: (716) 473-9500
TWX: 510-253-5981

5858 East Molloy Road
Syracuse 13211

Tel: (315) 454-2486
TWX: 710-541-0482

1 Crossways Park West
Weodbury 11797

Tel: (516) 921-0300
TWX: 510-223-0811

NORTH CAROLINA
P.0. Box 5188

1923 North Main Street
High Point 27262

Tel: (919) 885-8101
TWX: 510-926-1516

OHIO

25575 Center Ridge Road
Cleveland 44145

Tel: (216) 835-0300
TWX; 810-427-9129

3460 South Dixie Drive
Dayton 45439

Tel: (513) 298-0351
TWX: 810-459-1925

1120 Morse Road
Columbus 43229
Tel: (614) 846-1300

OKLAHOMA

6301 N, Meridian Avenue
Oklahoma City 73122
Tel: (405) 721-0200
TWX: 910-830-6862

OREGON

Westhills Mall, Suite 158
4475 S.W. Scholls Ferry Road
Portland 97225

Tel: (503) 292-9171

TWX: 910-464-6103

PENNSYLVANIA
2500 Moss Side Boulevard
Monrageville 15146
Tel: {412} 271-0724
TWX; 710-797-3650

1021 8th Avenue

King of Prussia Industrial Park
King of Prussia 19406

Tel: (215) 265-7000

TWX: 510-660-2670

RHODE ISLAND
873 Waterman Ave.
East Providence 02914
Tel: (401) 434-5535
TWX: 710-381-7573

*TENNESSEE
Memphis
Tel: (901) 274.7472

TEXAS

P.0. Box 1270

201 E. Arapaho Rd.
Richardsen 75080

Tel: (214) 231-6101
TWX: 910-867-4723

P.0. Box 27409

6300 Westpark Drive
Suite 100

Houston 77027

Tel: (713) 781-6000
TWX: 910-881-2645

231 Billy Mitchell Road
San Antonio 78226
Tel: (512) 434-4171
TWX: 910-871-1170

UTAH

2830 South Main Street
Salt Lake City 84115
Tel: (801) 487-0715
TWX: 910-925-5681

VERMONT

P.0. Box 2287

Kennedy Drive

South Burlington 05401
Tel: (802) 658-4455
TWX: 510-299-0025

VIRGINIA

P.0. Box 6514
2111 Spencer Road
Richmond 23230
Tel: (703) 285-3431
TWX: 710-956-0157

WASHINGTON
433-108th N.E.
Bellevue 98004

Tel: (206) 454-3971
TWX: 910-443-2303
*WEST VIRGINIA
Charleston

Tel: (304) 768-1232

FOR U.S. AREAS NOT
LISTED:

Contact the regional office near-
est you: Atlanta, Georgia...
North Hollywood, California. ..
Paramus, New Jersey . .. Skokie,
{llinois. Their complete ad-
dresses are listed above.

*Service Only

CANADA

ALBERTA

Hewlett-Packard (Canada) Ltd.
11748 Kingsway Ave.
Edmonton

Tel: (403) 452-3670

TWX: 610-831-2431

BRITISH COLUMBIA
Hewlett-Packard (Canada) Ltd.
4519 Canada Way

North Burnaby 2

Tel: (604) 433-8213

TWX: 610-922-5059

MANITOBA

Hewlett-Packard (Canada) Lid.
513 Century St.

Winnipeg

Tel: (204) 786-7581

TWX: 610-671-3531

NOVA SCOTIA
Hewlett-Packard (Canada) Ltd.
2745 Dutch Village Rd.

Suite 206

Halifax

Tel: (902) 455-0511

TWX: 610-271-4482

ONTARIO

Hewlelt-Packard (Canada) Ltd.
1785 Woodward Dr.

Ottawa 3

Tel: (613) 255-6180, 255-6530
TWX: 610-562-1952

Hewlett-Packard (Canada) Ltd.
50 Galaxy Blvd.

Rexdale

Tel: (416) 677-9611

TWX: 610-492-4246

QUEBEC

Hewlett-Packard (Canada) Ltd.
275 Hymus Boulevard

Pointe Claire

Tel: (514) 697-4232

TWX: §10-422-3022

Telex: 01-20607

FOR CANADIAN AREAS NOT
LISTED:

Contact Hewlett-Packard (Can-
ada) Lid. in Pointe Claire, at

the complete address listed
above.
ARGENTINA CHILE ECUAOOR . NICARAGUA PERU) URUGUAY
. It ia, Ltda, Laboratorlos de Radio-Ingenieria Roberto Terdn G. Compaiia Electro Medica S.A. Pablo Ferrando S.A.
geAw(I:eLthackard Argentina g:z:ﬁ; (iaelc:7gsn| ¥ Cla, Ltda Calle Guayaquil 1246 Apartado Postal 689 Ave. Enrique Canaual 312 Comercial e Industrial
Lavalie 1171 -3° santiago Post Office Box 3199 Edificio Terdn san Isidro Avenida Ilalia 2877
Buenas Alres Tel: 423 96 Quito Managua Casilla 1030 &asl{la'ge Correo 370
: 35. -0627, 35-0431 . i Tel: 212-496; 219-185 Tel: 3451, 3452 Lima ontevidea
E:exa.:‘u?;.aleo‘oa: § Gable: CALCACNI Santiago Cable: HORVATH Quito Cable: ROTERAN Managua Tel: 22-3900 Tel: 40-3102)
Cable: HEWPACK ARG COLOMBIA EL SALVADOR PANAMA Cable: ELMED Lima Cable: RADIUM tMontevideo
BRAZIL L"es‘:rkm:"t‘;%m:baek & Kier S.A, Electronic Associates Electrénico Balboa, S.A PUERTO RICO VENEZUELA
Hewlett-Packard Do Brasit c ,r:.e a7 N g48.59 """ Apartado Postal 1682 P.0. Box 4929 San Juan Electronics, Inc. Hewlett-Packard De Venezuela
l.e.C Ltda. arrer o Centro Comercial Gigante Ave, Manue! Espinosa No. 13-50 P.0. Box 5167 A

Rua Frel Caneca 1119

Sag Paulo - 3, SP

Tel: 288.7111, 287-5858
Cable: HEWPACK Sao Paulo

Hewlett-Packard Do Brasit
Praca Dom Feliciano 78
Salas 806/808

Porto Alegre

Rio Grande do Sul (RS)-Brasil
Tel: 25-8470

Cable: HEWPACK Parto Alegre

Hewlett-Packard Do Brasil
l.e.C. Ltda,

Rua da Matriz 29

Botafogo 2C-02

Rio de Janeiro, GB

Tel: 246-4417, 246-2919

Cable: HEWPACK Rio de Janeiro

Apartado Aerec 6287
Bogota, 1 D.E.

Tel: 45.78-06, 45-55-46
Cable: AARIS Bogota
Telex: 44400INSTCO

COSTA RICA

Lic. Alfredo Gallegos Gurdi4n
Apartado 10159

San José

Tel: 21-86-13

Cable: GALGUR San José

San Salvador, E| Salvador C.A.
Paseo Escalon 4649-4° Piso
Tel: 23-44-60, 23-32-37
Cable: ELECAS

GUATEMALA

IPESA

5a via 2-01, Zona 4
Guatemala City

Tel: 63-6-27 & 64-7-86
Telex: 4176 Mahohegu

MEXICO

Hewlett-Packard Mexicana, S.A.
de CV.

622 Adolfo Prieto

Col. del Valle

Mexico 12, D.F.

Tel: 543-4232; 523-1874

Telex: 017-74-507

Bldg. Alina

Panama City

Tel: 230833

Telex: 3481003, Curundu,
Canal Zone

Cable: ELECTRON Panama City

PARAGUAY

Z.T. Melamed S.R.L.

Division: Aparatos y Equipos
Medicos

Saion de Exposicion y Escritorio:
Chile 482

Edificio Victoria—Planta Baja
Asuntion, Paraguay

Tel: 4-5069, 4-6272

Cable: RAMEL

Ponce de Leon 154

Pda. 3-PTA de Tierra

San Juan 00906

Tel: (809) 725-3342, 722-3342
Cable: SATRONICS San Juan
Telex: SATRON 3450 332

Apartado 50933

Caracas

Tel: 71.88.05, 71.88.69, 71.99.30
Cable: HEWPACK Caracas

Telex: 21148 HEWPACK

FOR AREAS NOT LISTED,

CONTACT:

Hewlett-Packard
INTERCONTINENTAL

3200 Hillview Ave.

Palo Alto, California 94304

Tel: (415) 493-1501

TWX: 910-373-1267

Cable: HEWPACK Palo Alto

Telex: 034-8300, 034-8493

E 872

The Symbols and Mnemonics for the Keys of the Basic Model 20

IN QUOTE FIELD? IN QUOTE FIELD? IN QUOTE FIELD? IN QUOTE FIELD?
KEY KEY KEY KEY
NO YES NO YES NO YES NO YES
; . _ 5
i (o] NOTE 2 ' \ NOTE 3
S [0 TR S R
o @ = wn (recory) NOTE 2 ! | NOTE 3
A [T
s o (\;_\) | i NOTE 3
[
..... [
i, : — NOTE 3
./
el @fii
i b o NOTE 3
- A %
5 b | noTe 2 @ . NOTE 3
---------- C&)]
b | NOTE 2 @ ,,,,,,,,,, L NOTE 3
. o [
b : ' NOTE 3 L NOTE 3
D (a2
3 } b | NOTE 2 T NOTE 3 y NOTE 3
B (PR
b | NOTE 2 L NOTE 3 P NOTE 3 b
el NS
[¢ These keys are the Mechanics Group
! @ b NOTE 2 L NOTE 3 i and have no Mnemonics or Symbols.
oD .
@ R B 2 b | NOTE 2 o NOTE 3 -1 — —
SEERE =
. 3D .
5 ks b | NOTE 2 N /j NOTE 3 —_ —_—
KDy .
b | NOTE 2 o NOTE 3 — —
\ A
- D .
§ ; T h| NOTE 2 i | NOTE 3 — —
[b | NOTE 2 T NOTE 3 il (oack) — —
, , OISPLAY b ! | J\ NOTE 3 ' [FoRWARD) —_— _
u u [
H (7Rt * T b | NOTE 2 | i NOTE 3 (oereTe) — —
0 SPACEN] b | NOTE 2 i ! NOTE 3 iNSERT] — —
. [
‘ NOTE 1 (rorbac) b | NOTE 2 L NOTE 3 (Recai) — —
. R ___
-+ -+ TRACE] b | NOTE 2 ! . NOTE 3 Cust) — _—
NOTES
1. The " character never occurs inside a quote field; it is used exclusively to 3. If this key is used outside of a quote field, T TE 1 1 will result unless the
begin or terminate a quote field. key is defined by a plug-in ROM, in which case the mnemonic or symbol is

determined by the ROM.
2. This key produces one character with an arbitrary pattern. Sometimes the
pattern will vary according to which plug-in ROM's are installed. 4. The character b denotes a blank space.

A

